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Abstract—Temporal knowledge graph (TKG) forecasting is
widely used in various fields due to its ability to infer future events
based on historical information. Modeling the internal structures
and chronological dependencies of historical subgraph sequences
has been proven effective. Nevertheless, on the one hand, the TKG
forecasting process generally suffers from a lack of sufficient sam-
ple data due to historical resource limitations; thus, most works
focus on continuously mining the patterns of historical sequences
while ignoring the semantically-rich background information
provided by external knowledge, especially when historical query-
related information is scarce. On the other hand, when merely
serializing the given subgraph sequence to mimic its temporal
evolution process, only the chronological dependencies between
the subgraphs can be considered, thus ignoring the evolution of
time information. Hence, a method that integrates internal and
external knowledge to enhance the representations of entities is
urgently needed. To this end, we propose a novel TKG forecasting
method, namely, the internal and external evolution-enhanced
framework (IE-Evo). For the former issue, we design an external
evolution encoder and use a pre-trained language model (PLM)
to provide powerful external knowledge semantics for TKG
forecasting. To address the latter concern, we propose an internal
evolution encoder that explicitly embeds the time information
while modeling the aggregation and evolution processes of the
observed sequential structural information. IE-Evo has been
evaluated on four public benchmark datasets, showcasing its
significant improvements across multiple evaluation metrics.

Index Terms—Temporal knowledge graph extrapolation, Ex-
ternal knowledge, Time information evolution

I. INTRODUCTION

Temporal knowledge graphs (TKGs) incorporate time infor-

mation into traditional knowledge graphs and represent a real-

world fact (event) as a quadruple (subject, relation, object,
timestamp). A TKG is actually composed of static subgraphs

divided by the time dimension, and each subgraph contains all

the facts occurring at the specific corresponding timestamp.

TKG forecasting focuses on inferring incomplete events for

a future subgraph according to the information contained in

the historical subgraphs. Given its practical significance, TKG

forecasting finds extensive applications in domains such as

financial forewarning and behavioral prediction. To obtain

more information for forecasting future events, an increasing

number of works [1]–[5] have focused on mining the patterns

of historical subgraphs inside TKGs. This is actually a graph
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Fig. 1. Illustration of the issues regarding the lack of background information
and time information evolution inside a TKG for obtaining clear entity
portraits of interest.

sequence modeling problem, where not only the structural

information within each subgraph but also the temporal evolu-

tion of the subgraph sequence need to be taken into account.

However, two main challenges remain to be addressed.

The lack of background information over time inside a
TKG. The historical space can be regarded as a background

knowledge base in nature and the challenge regarding the

lack of background information is always a limitation of the

modeled historical scope. As shown in Figure 1(a), in the

event-based TKG Integrated Crisis Early Warning System, we

analyze the dynamic relationship between the frequencies of

entities and their numbers of associated facts. It is commonly

observed that the majority of entities have sparse associated

quadruples over time. Consequently, in the long term, a TKG

lacks sufficient historical information to effectively forecast

future events. Thus, persistently mining the internal evolution

process may yield little information; nevertheless, few works

thus far have focused on the external knowledge outside

a TKG. In the well-adopted codec-based architecture, the

encoder aims to make the embedding of an entity contain
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as much useful entity-related information as possible in the

structural aggregation and evolution processes to obtain an ac-

curate representation. This process can be similarly described

as drawing an entity portrait.

Then, Figure 1(b) illustrates the decoding process based

on the different degrees of entity portraits. When answering

(Sunak, serves as, ?, 2023-9-1), the decoder first asks the

encoder “who is Sunak?”, which means obtaining the repre-

sentation of the “Sunak” entity. We define the background

information as an event text that is relevant to the entity of

interest. On the one hand, if “Sunak” is a newly emerging

entity, as the first portrait shows, the lack of background

information makes the encoder completely unable to answer

the question, and the vague description makes the decoder

produce a forecast with an almost random guess. Thus, ex-

ternal knowledge can undoubtedly help the encoder learn

the complete entity representation. On the other hand, if

“Sunak” has rich repetitive patterns in history, e.g., as the third

portrait shows, numerous facts, such as (Sunak, was born in,

Southampton (UK), 1980-5-12) and (Sunak, served as, Con-

servative Member of Parliament (MP), 2015-5-7), appeared in

history, then the encoder’s representation of the “Sunak” entity

becomes clearer, but the additional background information

provided by external knowledge can also enhance the entity

embedding. A clear portrait of the entity in the encoder is

helpful for obtaining the query’s solution in the decoder.

The lack of time information evolution inside a TKG.
The temporal evolution of a subgraph sequence includes the

evolution of time information in addition to the chronological

dependencies between different pieces of structural informa-

tion. Sequential modeling only considers the chronological

dependencies of a TKG; that is, the model can only understand

which timestamp occurs former and which occurs latter, but

cannot know the exact time of an event, which may result

in an inaccurate judgment of a temporal evolution process

containing long-term patterns. As shown Figure 1(c), in a

case where only sequential modeling is performed, the model

does not take the specific representations of time information

such as 1980-5-12, 2015-5-7, 2020-2-13, and 2022-10-24 into

account. Instead, it only knows that Sunak served as the British

chancellor of the exchequer before serving as the leader of

the British Conservative Party, as a Conservative MP before

becoming the chancellor of the exchequer, and was born in

Southampton before becoming an MP. If Sunak was born in

the 19th century, it would make no sense to forecast what

he will serve as on September 1st, 2023. Therefore, merely

modeling the sequential information without considering the

evolution of time information would greatly reduce the limited

aggregatable background information that the historical space

can provide. Thus, current works not only completely ignore

the evolution of external knowledge, but also fail to completely

model the temporal evolution of internal knowledge.

Our contributions. In this paper, we propose a TKG fore-

casting method, namely, the Internal and External Evolution-

enhanced framework (IE-Evo), to address the abovementioned

challenges. As shown in Figure 2, for the former issue, we

utilize a pre-trained language model (PLM) in the external

evolution encoder to introduce external knowledge related

to the entities. Specifically, we utilize each entity’s textual

references in the real world to establish a link with the external

PLM and then introduce external background information to

enhance the representations of entities. We can then obtain the

initial embeddings, which aggregate the external background

information of the corresponding entities. Then, we model the

structural aggregation and the chronological dependencies of

the external knowledge via a GCN and an RNN, respectively.

For the latter issue, to effectively utilize the limited historical

information within a TKG, we need to simultaneously consider

the chronological dependencies and time information evolu-

tion, thus enhancing the temporal evolution modeling of the

internal knowledge. As Figure 2 shows, we design an internal

evolution encoder, in which a time cell is designed to address

the problem of time information evolution, and an RNN is used

to model the chronological dependencies. It explicitly embeds

and updates the timestamp information of the next historical

subgraph in the temporal development process, thus making

the time information and structure information participate in

the evolution of the historical sequence together.

The contributions of our work are summarized as follows.

• We propose an internal and external evolution-enhanced

framework for TKG forecasting, which comprehensively

integrates entity-related information within and outside

the TKG to enhance the representations of entities for

future event forecasting.

• In the framework, we design two encoders that perform

external and internal evolution to address the shortage

of background information and the lack of time infor-

mation evolution, respectively, in the historical subgraph

sequence of a TKG.

• Substantial experiments are carried out on four well-

known TKG datasets. The effectiveness of IE-Evo for

TKG forecasting is evident from the improvements ob-

served across almost all performance metrics.

The remainder of this paper is organized as follows. Sec-

tion II discusses the related work. Section III details the IE-

Evo model. Experimental analyses are contained in Section IV,

followed by the conclusions in Section V.

II. RELATED WORK

There are mainly two modeling strategies currently utilized

in TKG forecasting.
a) Static Forecasting Methods: Temporal dynamics are

not considered in this modeling strategy. Translation-based

methods leverage a low-dimensional vector space to em-

bed both relations and entities; these approaches include

RotatE [6], etc. Among them, RotatE implements relation-

based rotation from subjects to objects. Matrix decomposition-

based methods model a specific relation as a decomposable

matrix; such approaches include ComplEx [7], DistMult [8],

etc. Convolution-based methods define entities and relations

as matrices to conduct the operations of convolution; the rep-

resentative models include Conv-TransE [9] and ConvE [10].
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Fig. 2. The framework of IE-Evo. The blue matrices indicate the front-end part of the entity embeddings. The yellow and green matrices represent the
back-end part of the entity embeddings derived from the pre-trained language model (PLM) and the time information, respectively.

GCN-based methods, including R-GCN [11], can aggregate

adjacent information of the entities via the message-passing

architecture for a static KG.

b) Dynamic Forecasting Methods: This kind of modeling

strategy can be divided into two categories according to

whether the utilized method is suitable for scenarios involving

the inference of future events: interpolation and extrapola-

tion. Interpolation methods are trained under the condition

that the global information (including historical and future

information) is known, and thus, these approaches, such as

HyTE [12], TA-DistMult [13], and TTransE [14], are not

good at future forecasting tasks. In the extrapolation setting,

only historical information is available. CyGNet [15] intro-

duces a copy-generation mechanism derived from abstractive

summarization. RE-NET [1] treats the historical information

as conditional probabilities. xERTE [16] builds an inference

graph with query entities as the center. TLogic [17] performs a

temporal random walk through rule learning. CEN [3] adopts

an online training strategy to cope with the time-varying

challenge. TITer [18] calculates the future entity embeddings

of a specific query path via reinforcement learning. DA-

Net [19] and DHU-NET [20] copes with the time-variability

evolution of entity representations. RETIA [21] aggregates

complete neighborhood messages by constructing positional

hyperrelation subgraphs. Following RE-GCN [2], TiRGN [4]

also uses a recurrent relational GCN and an RNN to model the

given historical sequence. HGLS [5] designs a hierarchical re-

lational GCN to aggregate short-term and long-term structural

information. CENET [22] employs a statistical-based method

that obtains the representations of non-historical events and

entities through contrastive learning.

Among the abovementioned extrapolation approaches, only

xERTE, TITer, and CENET attempt to address the representa-

tion problem of entities with scarce background information.

However, they are still stuck mining the hidden patterns inside

a TKG and neglect to provide the missing semantics of internal

information through external knowledge. PPT [23] converts

the TKG forecasting task into a masked token prediction

task through prompts, but it relies entirely on the external

knowledge provided by PLMs, instead ignoring the structural

aggregation and temporal evolution processes inside a TKG.

On the other hand, some early interpolation methods and the

latest extrapolation methods consider the time information

representation problem. For example, HyTE regards a specific

time embedding as a hyperplane. TiRGN incorporates time

embeddings into the decoding process. HGLS models time

embeddings in the constructed global KG. However, both in-

terpolation and extrapolation approaches neglect the evolution

of time information (embeddings) over time.

III. METHODOLOGY

In this section, we provide a comprehensive explanation of

our IE-Evo model. We start by introducing the notations and

definitions. Subsequently, we delve into the overall framework

and various components of the model. Additionally, we cover

the training strategy and analyze the time complexity.

A. Notations and Definitions

A TKG G is formally represented as a static subgraph

sequence G={G1, G2, G3, · · · , GT }, where T is the size of the

timestamp set T . Then, we define the entity set as E , the entity

reference set as Er (both have sizes of N ), and the relation

set as R with a size of R. A static subgraph Gt consists of

all the fact triples (s, r, o) occurring at a specific timestamp

t, where {s, o}∈ E , r ∈ R, and t ∈ T . We define the relation

embeddings of a TKG G for the internal and external evolution
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encoders as RIn and REx, respectively, the two encoders’ entity

embeddings for a certain subgraph Gt as Et
In and Et

Ex, and the

embedding of a specific timestamp t as Tt. As Figure 2 shows,

the dimensions of the front-end embeddings, external back-end

embeddings, and internal back-end embeddings are defined as

dfr, dlm, and dte, respectively. In general, TKG forecasting

aims to infer a missing object (s, r, ?, t+1) or a missing subject

(?, r, o, t+1) occurring at a future subgraph Gt+1 when the

l-length historical subgraphs {Gτ | t-l+1≤τ<t+1} are known.

B. Framework Overview

The proposed IE-Evo model is composed of two encoders

and a decoder. As the yellow matrix in Figure 2 shows,

the external evolution encoder is responsible for generating

the background knowledge embeddings via an external PLM

according to the entities’ textual references, splicing them

with the randomly initialized front-end entity embeddings

(as the blue matrix in Figure 2 shows) and then inputting

them into a sequence of GCNs and RNNs to perform the

external knowledge evolution process. As the green matrix in

Figure 2 shows, the internal evolution encoder is responsible

for splicing the timestamp embedding of each historical sub-

graph with the front-end entity embeddings, and then inputting

them into a sequence of GCNs, RNNs, and time cells to

perform the internal knowledge evolution procedure. Note that

the same front-end entity embeddings are used to establish

the association between the two encoders. We do not define

an explicit source (internal or external) for the randomly

initialized front-end embeddings, and the main distinction lies

in the different roles played by the back-end embeddings. The

decoder simultaneously learns the roles of the internal and

external evolution processes in TKG forecasting in the form

of score summing.

C. External Evolution Encoder

This module aims to obtain the external background knowl-

edge and model its evolution process. In this paper, we choose

the pre-trained BERT [24] model (specifically, the bert-base-

uncased model1) as the external PLM, and the R-GCN [11]

and GRU [25] models as the units of the GCN and RNN

sequences, respectively. The real-world reference sentences

of the entities are utilized to establish links between the

external PLMs and the TKGs. For example, in the ICEWS14

dataset, the real-world reference of the 24th entity is “North

Atlantic Treaty Organization”. Then the input format of the

BERT model is “[CLS] North Atlantic Treaty Organization

[SEP]” for the 24th entity. Note that these real-world textual

references of the entities are provided in the TKG datasets. The

traditional approaches are to number and randomly initialize

the textual reference information of entities to learn the

embeddings of internal knowledge. However, we utilize this

information to establish a link with the external PLMs and

then introduce external background information to enhance

the representation of entities.

1https://huggingface.co/bert-base-uncased

a) External Knowledge Acquisition: The entity reference

set Er records the corresponding objective existence of each

entity in the real world. We obtain the back-end entity embed-

dings of the fused external knowledge by inputting the set as

a whole into the BERT model:

ELM = WLMBERT(Er) + bLM (1)

where BERT(Er) ∈ R
dBERT×N, WLM ∈ R

dlm×dBERT ,

bLM ∈ R
1×N , and ELM ∈ R

dlm×N . dBERT is defined as

the output dimensionality of the BERT model. Note that

each entity reference sentence in the set Er may contain a

different number of tokens. Thus, we adopt padding mask

technology [26] to address this problem.
b) External Structural Aggregation: For an l-length his-

torical sequence, we should aggregate the adjacent structural

information of the entities in each subgraph. In particular, we

concatenate the back-end embeddings of external knowledge

with the randomly initialized front-end embeddings and input

them into the first historical subgraph Gt−l+1 for aggregation:

Einput
Ex = Con(Einit,ELM) (2)

where Einit ∈ R
dfr×N and Einput

Ex ∈ R
(dfr+dlm)×N. Einit denotes

the front-end embeddings of entities, and Con represents the

concatenation operation. For a specific historical subgraph Gt,

the aggregation process can be formally represented as:

Et
Egcn = R_GCNEx(Et−1

Ex ,REx) (3)

where Et
Egcn, Et−1

Ex ∈ R
(dfr+dlm)×N, and REx ∈ R

(dfr+dlm)×R.

Et
Egcn is the output of an external R-GCN model at the

tth timestamp. Et−1
Ex is actually the output of the (t-1)th

external GRU model and the finally collected external entity

embeddings at the (t-1)th timestamp. Note that Et−l
Ex = Einput

Ex
when calculating the GCN output Et−l+1

Egcn of the first (t-
l+1)th historical subgraph. Specifically, the message-passing

architecture is adopted to perform the aggregation operation

at each historical timestamp:

el+1
o = f

⎛
⎝∑

r∈R

∑
s∈Er

o

1

co,r
Wl

r(e
l
s + rl) +Wl

0elo

⎞
⎠ (4)

where elo and els represent the lth-layer embeddings of entities

o and s in each R-GCN model, respectively. The set Er
o records

all of the entities that are linked to the updated entity o via a

specific relation r. co,r is the size of Er
o , and f(·) denotes the

reflected rectified linear unit (RReLU) function. Wl
r and Wl

0

are learnable parameters for a normal or self-looping edge r,

respectively.
c) External Chronological Dependencies Modeling: To

model the external structure dependencies between subgraphs,

we utilize a sequence of RNNs, as shown in Figure 2. The

inputs of the tth RNN (specifically, a GRU) are the (t-1)th

RNN output and the tth GCN output:

Et
Ex = GRUEx(Et−1

Ex ,Et
Egcn) (5)

where Et
Ex, Et−1

Ex , and Et
Egcn ∈ R

(dfr+dlm)×N. Et
Ex denotes the

final external entity embeddings at the tth historical timestamp.
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D. Internal Evolution Encoder

This encoder aims to completely model the structural and

temporal evolution processes within a TKG. Note that the

temporal evolution includes not only the chronological depen-

dencies but also the evolution of time information.

a) Internal Time Information-Aware Aggregation: We

form an evolutionary design by adding time information to

each subgraph’s structural information aggregation process.

For the first subgraph Gt−l+1 of the l-length historical se-

quence, we concatenate the same front-end embeddings as

those of the external evolution encoder with the time embed-

dings of the current timestamp, and then use them as inputs

for the internal GCN sequence:

Einput
In = Con(Einit,BC(Tt−l+1)) (6)

where Einput
In ∈ R

(dfr+dte)×N and Tt−l+1 ∈ R
dte . BC denotes

the broadcasting operation that extends the shape of the vector

Tt−l+1 to dte ×N . Based on the message-passing architecture

described by Equation 4, the internal time information-aware

aggregation process can be formally represented as:

Et−1
Igcn = R_GCNIn(Et−1

time ,RIn) (7)

where Et−1
Igcn , Et−1

time ∈ R
(dfr+dte)×N and RIn ∈ R

(dfr+dte)×R. Et−1
Igcn

and Et−1
time are the outputs of an internal R-GCN model and

a time cell at the (t-1)th timestamp, respectively. Note that

Et−l
time = Einput

In at the first (t-l+1)th historical timestamp.

b) Internal Chronological Dependencies Modeling: A

sequence of GRUs is also adopted to capture the chronological

dependencies between the subgraphs within a TKG:

Et−1
In = GRUIn(Et−1

time ,Et−1
Igcn ) (8)

where Et−1
time , Et−1

Igcn , and Et
In ∈ R

(dfr+dte)×N. Et−1
In represents the

finally collected entity embeddings of the internal evolution

encoder at the (t-1)
th

historical timestamp.

c) Internal Time Information Evolution: To completely

model the temporal evolution process of a TKG, we need to

consider the time information evolution process in addition

to the chronological dependencies. To embed the time infor-

mation of different subgraphs into the evolution procedure

of the structural information, we first perform dimensionality

reduction on the final internal embeddings of each timestamp:

Et
temp = WtimeEt−1

In + btime (9)

where Et
temp ∈ R

dfr×N is a temporary matrix obtained after di-

mensionality reduction. Wtime ∈ R
dfr×(dfr+dte) and btime ∈ R

1×N

are learnable parameters. Then, similar to the operation in

Equation 6, we explicitly embed and update the time infor-

mation during the internal structure aggregation and temporal

evolution calculations:

Et
time = Con(Et

temp,BC(Tt)) (10)

where Et
time ∈ R

(dfr+dte)×N is the time cell output of the tth

historical subgraph.

E. Decoder and Training Strategy

The time-variability problem refers to a real-world phe-

nomenon: the historical information distributed over different

timestamps plays distinct roles in forecasting future facts.

To accommodate the time-variability scenarios, we use two

sequences of Conv-TransE [9] models as the internal and

external decoders, and adopt an online training strategy [3]

to take each subgraph of the l-length historical sequence into

account. In general, for a forecasting task (s, r, ?, t+1) at

a future timestamp t+1, the internal and external decoding

processes can be represented as follows:

pt+1
In =

t∑
T=t−l+1

σ(CTT
In(s

T
In, rIn) · ET

In) (11)

pt+1
Ex =

t∑
T=t−l+1

σ(CTT
Ex(s

T
Ex, rEx) · ET

Ex) (12)

where T ∈ [t − l + 1, t] denotes the l-length historical

timestamps. sTIn, sTEx, rIn, and rEx denote the embeddings of

the entity s and relation r from the Tth historical timestamp

matrices ET
In, ET

Ex, RIn, and REx, respectively. As shown in

Figure 2, CTT
In and CTT

Ex denote the Conv-TransE models

of the internal and external evolution decoders at the Tth

historical timestamp, respectively. σ(·) indicates the sigmoid

activation function. pt+1
In ∈ R

N and pt+1
Ex ∈ R

N are the final

internal and external event forecasting scores at the (t+1)th

future timestamp, respectively.

During online training, we simultaneously learn the roles

played by internal and external evolution by summing the two

scores. Finally, we adopt the cross-entropy loss for this task:

L = −
∑

(s,r,o,t)∈G
otln(pt+1

In + pt+1
Ex ) (13)

where pt+1
In +pt+1

Ex ∈ R
N. Each dimension represents the prob-

ability of forecasting the matched entity as the missing object

o. ot is the ground-truth missing entity for the forecasting task

at the tth timestamp.

F. Computational Complexity Analysis

To demonstrate the practical capacity of the IE-Evo model,

we analyze the computational complexities of its two encoders.

For the external evolution encoder, the time complexities

of the external knowledge acquisition, structural aggrega-

tion, and chronological dependencies modeling processes are

O(n2dBERT), O(lN), and O(ld2), respectively, where n is the

maximum number of entity reference tokens. For the internal

evolution encoder, the time complexities of the internal time

information-aware aggregation, chronological dependencies

modeling, and time information evolution processes are O(lN),
O(ld2), and O(N), respectively. Therefore, the time complexity

of the IE-Evo model is O(n2dBERT+l(N + d2)).

IV. EXPERIMENTS

In this section, we empirically evaluate the performance of

the IE-Evo model through multiple experiments conducted on

four well-established TKG datasets.
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TABLE I
PERFORMANCE (IN PERCENTAGES) ACHIEVED ON THE TKG DATASETS IN TERMS OF RAW METRICS. THE BEST AND SECOND-BEST RESULTS ARE

BOLDED AND UNDERLINED, RESPECTIVELY.

Model
YAGO ICEWS14 ICEWS05-15 ICEWS18

MRR Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

DistMult 44.05 49.70 59.94 20.32 6.13 27.59 46.61 19.91 5.63 27.22 47.33 13.86 5.61 15.22 31.26
ConvE 41.22 47.03 59.90 30.30 21.30 34.42 47.89 31.40 21.56 35.70 50.96 22.81 13.63 25.83 41.43
ComplEx 44.09 49.57 59.64 22.61 9.88 28.93 47.57 20.26 6.66 26.43 47.31 15.45 8.04 17.19 30.73
Conv-TransE 46.67 52.22 62.52 31.50 22.46 34.98 50.03 30.28 20.79 33.80 49.95 23.22 14.26 26.13 41.34
RotatE 42.08 46.77 59.39 25.71 16.41 29.01 45.16 19.01 10.42 21.35 36.92 14.53 6.47 15.78 31.86
R-GCN 20.25 24.01 37.30 28.03 19.42 31.95 44.83 27.13 18.83 30.41 43.16 15.05 8.13 16.49 29.00

TTransE 26.10 36.28 47.73 12.86 3.14 15.72 33.65 16.53 5.51 20.77 39.26 8.44 1.85 8.95 22.38
HyTE 14.42 39.73 46.98 16.78 2.13 24.84 43.94 16.05 6.53 20.20 34.72 7.41 3.10 7.33 16.01
TA-DistMult 44.98 50.64 61.11 26.22 16.83 29.72 45.23 27.51 17.57 31.46 47.32 16.42 8.60 18.13 32.51

RE-NET 46.81 52.71 61.93 35.77 25.99 40.10 54.87 36.86 26.24 41.85 57.60 26.17 16.43 29.89 44.37
CyGNet 46.72 52.48 61.52 34.68 25.35 38.88 53.16 35.46 25.44 40.20 54.47 24.98 15.54 28.58 43.54
xERTE 64.29 74.50 87.38 32.23 24.29 36.41 48.76 38.07 28.45 43.92 57.62 27.98 19.26 32.43 46.00
RE-GCN 63.07 71.17 82.07 41.50 30.86 46.60 62.47 46.41 35.17 52.76 67.64 30.55 20.00 34.73 51.46
TITer 64.97 74.80 87.44 40.90 31.77 45.84 57.67 46.62 36.46 52.29 65.23 28.44 20.06 32.07 44.33
TLogic - - - 41.80 31.93 47.23 60.53 45.99 34.49 52.89 67.39 28.41 18.74 32.71 47.97
CEN 63.39 71.68 83.16 41.64 31.22 46.55 61.59 49.57 37.86 56.42 71.32 29.70 19.38 33.91 49.90
TiRGN 64.71 74.17 87.01 43.88 33.12 49.48 64.98 48.72 37.17 55.48 70.53 32.06 21.08 36.75 53.62
HGLS - - - 47.00 35.06 - 70.41 46.21 35.32 - 67.12 29.32 19.21 - 49.83
CENET 55.68 62.26 76.79 35.81 26.90 39.45 53.53 39.02 28.77 43.77 58.88 26.47 17.57 29.50 44.33
PPT - - - 38.42 28.94 42.50 57.01 38.85 28.57 43.35 58.63 26.63 16.94 30.64 45.43

IE-Evo 68.43 79.93 89.85 44.87 34.46 49.64 65.26 51.72 40.03 58.75 72.97 34.04 22.86 39.15 55.89
±0.04 ±0.05 ±0.08 ±0.01 ±0.02 ±0.02 ±0.01 ±0.01 ±0.02 ±0.01 ±0.03 ±0.01 ±0.02 ±0.02 ±0.03

TABLE II
DETAILS OF THE TKG DATASETS.

#Datasets ICEWS14 ICEWS05-15 ICEWS18 YAGO

#Entities 6,869 10,094 23,033 10,623
#Relations 230 251 256 10
#Training 74,845 368,868 373,018 161,540
#Validation 8,514 46,302 45,995 19,523
#Test 7,371 46,159 49,545 20,026
#Granularity 24 hours 24 hours 24 hours 1 year

A. Experimental Setup

a) Datasets: Four widely-used TKG datasets are uti-

lized for evaluation purposes, namely, YAGO [12], ICEWS05-

15 [13], ICEWS14 [13], and ICEWS18 [1]. YAGO is a

temporal subgraph extracted from YAGO3 [27]. ICEWS05-

15, ICEWS14, and ICEWS18 are time-series political records

from the Integrated Crisis Early Warning System [28]. Follow-

ing previous works [1]–[4], we split the datasets in chronolog-

ical order. The training set accounts for 80% of the original

datasets, and the validation and test sets each account for 10%

of the remaining data. Table II details the statistics of the

adopted datasets.

b) Baseline Methods: The IE-Evo model is compared

to multiple TKG forecasting methods, including static and

dynamic. Among the static methods are ConvE [10], Dist-

Mult [8], ComplEx [7], Conv-TransE [9], R-GCN [11],

and RotatE [6]. The interpolation methods include TA-

DistMult [13], TTransE [14], and HyTE [12]. We focus on

comparisons with some extrapolation methods, including RE-

NET [1], xERTE [16], CyGNet [15], TITer [18], RE-GCN [2],

TLogic [17], CEN [3], TiRGN [4], CENET [22], HGLS [5],

and PPT [23]. We detail the baseline methods in Section II.

c) Evaluation Metrics: For the TKG forecasting task,

four widely adopted metrics are used to evaluate the per-

formance of the tested models. The MRR represents the

average rankings of missing entities. Hits@1/3/10 indicate the

proportions of queries with missing entities in the top 1/3/10

forecasting results. Following RE-GCN [2], the mean results of

object forecasting and subject forecasting tasks are reported,

and for the YAGO dataset, only the Hits@3, Hits@10, and

MRR metrics are reported. According to previous works, the

static filtering setting is not suitable for temporal scenarios. In

addition, the filtering operation tends to obtain better results

by filtering out conflicting candidates and cannot reflect the

real abilities of models. Thus, we adopt the raw setting and

report the raw results obtained by the tested methods.

d) Implementation Details: We implement and train the

IE-Evo model using PyTorch and a GeForce RTX 3090 GPU.

We configure the parameters on the validation set during the

traditional training process and fine-tune them according to the

newly emerging historical information during the validation

and test processes. We set the batch size to match the size of

each timestamp, and use 100 training epochs across all datasets

to ensure the convergence of the model. We set the historical

length l to 4 for the ICEWS18 dataset, 9 for the ICEWS05-

15 dataset, and 3 for the YAGO and ICEWS14 datasets. The

historical length l is analyzed in detail in Section IV-G. For

the BERT model, we set the dropout rate to 0.1, the hidden

size dBERT to 768, the number of hidden layers to 12, and

the number of attention heads to 12. For the R-GCN models,

the number of hidden layers and the dropout rate are set to 2

and 0.2, respectively. For the Conv-TransE models, we set the

dropout rate to 0.2, the kernel size to 2×3, and the number

of kernels to 50. We set dfr = 96 and dlm = dte = 32 for the

YAGO dataset, and dfr = dlm = dte = 64 for the ICEWS18,

ICEWS05-15, and ICEWS14 datasets. In addition, the Adam

optimizer is chosen for training, and the learning rate is set to

0.001. Following TiRGN [4] and RE-GCN [2], we also add
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TABLE III
ABLATION STUDY RESULTS (IN PERCENTAGES) OBTAINED ON ALL THE

DATASETS.

Datasets YAGO ICEWS14 ICEWS05-15 ICEWS18

Internal Evolution 60.43 12.00 14.95 10.41
External Evolution 67.23 43.58 49.46 30.00

IE-Evo 68.43 44.87 51.72 34.04

static graph constraints for the ICEWS series datasets.

For the static methods, the time dimension is simply re-

moved. Following the same dataset and splitting strategy, some

of the baseline results are taken from [2]. For the important

baseline methods including TITer [18], CEN [3], xERTE [16],

TLogic [17], TiRGN [4], and CENET [22], we replicate the

results with their public codes and default parameters under the

raw setting. For the HGLS [5] and PPT [23] models without

open-source codes, we adopt their reported results due to the

use of the same evaluation metrics and settings.

B. Forecasting Results Obtained on TKGs

In this section, the capability of the IE-Evo model is

compared with that of multiple dynamic and static methods.

As Table I shows, the IE-Evo model significantly out-

performs the static methods because they do not take the

time dimension in which the facts occur into account. Some

interpolation methods, like TTransE and HyTE, prioritize the

embeddings of time information, but overlook the evolution of

historical sequences. Excluding the unsuitability of forecasting

scenarios, this may result in even worse performance than that

of some static methods. The advanced extrapolation methods

mainly focus on capturing the structural evolutionary patterns

while ignoring the time information embeddings and their

evolution. For example, RE-NET, RE-GCN, and CEN all

regard a TKG as a sequential stack of subgraphs. Under such

circumstances, distinct time information is not available, and

only the chronological dependencies of temporal evolution can

be considered. TLogic treats a TKG as a rule learner, with

fixed rule templates that provide substantial results; however, it

simultaneously ignores the structural aggregation and temporal

evolution processes within a TKG. CyGNet only considers

the timestamp information where the forecasting facts are

located, but the time information and its evolution between the

historical subgraphs are still ignored. TiRGN and HGLS both

attempt to learn the embeddings of the timestamp information

but neglect its evolution. IE-Evo outperforms the dynamic

methods because it simultaneously considers the historical

timestamp embeddings and evolution patterns, and thus has

the ability to model the time information evolution process

on the basis of chronological dependencies. We note that IE-

Evo performs slightly worse than HGLS on the ICEWS14

dataset, because HGLS simply adds explicit edges to connect

the concurrent entities at different timestamps in the global

KG. This allows HGLS to reap larger gains on some small-

scale graphs (e.g., ICEWS14), which contain many sparse facts

without complex semantics. However, as the results show, IE-

Fig. 3. Study on the external evolution
process and background information
in terms of all the datasets.

Fig. 4. Study on the role of external
embeddings in the external evolution
process in terms of the YAGO dataset.

Evo possesses stronger robustness than HGLS to accommo-

date the modeling of large-scale multi-relational graphs (e.g.,

ICEWS05-15 and ICEWS18).

On the other hand, constrained by the lengths of the given

subgraph sequences, limited background information is avail-

able in the historical space (the background knowledge base).

Specifically, TITer, xERTE, and CENET attempt to address

the challenges faced by the encoder in terms of the lack of

background information for some forecasting facts within a

TKG. Among them, TITer and xERTE aggregate and induce

the representations of entities with scarce or even no historical

information through neighborhood information; nevertheless,

as shown in Table I, their commitment to mining the internal

evolution process has little effect on the results. CENET

attempts to obtain the representations of non-historical entities

via contrastive learning; however, it restricts historical entities

to only the one-hop entities associated with the query facts,

and instead fails to effectively model most historical entities.

CENET [22] reports results under an unreasonable static filter-

ing setting, but when a more reasonable raw setting is used for

evaluation, as shown in Table I, it performs catastrophically.

The IE-Evo model performs better than these methods because

we introduce much semantically rich background information

from an external PLM and model the evolution process of

external knowledge for addressing the semantically poor enti-

ties within a TKG. Each entity has its own textual references

in the real world; for example, the 1st entity corresponds

to North Korea in the ICEWS18 dataset. For entities with

sufficient internal background information, the addition of

external knowledge can enhance their representations. Thus,

through the abovementioned two aspects, IE-Evo outperforms

the baseline models in terms of nearly all evaluation metrics.

C. Ablation Study

In this section, we conduct an ablation study on all the

datasets and present the results using the representative MRR

metric due to space constraints.

As Table III shows, we use the scores of the internal

and external decoders to predict future events to express

the roles of internal and external evolution in the IE-Evo

model. It is observed that the performance achieved using

any single module is lower than that of the complete IE-Evo

model, which proves that the internal and external modules are
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TABLE IV
STUDY ON THE DIFFERENT EXTERNAL PLMS IN TERMS OF THE ICEWS18

DATASET.

PLMs Params MRR Hits@1 Hits@3 Hits@10

bert-base-uncased 109.48 M 34.04 22.86 39.15 55.89
bert-base-cased 108.31 M 33.99 22.78 39.10 55.80
bert-large-uncased 333.58 M 33.98 22.77 39.13 55.80
roberta-base 124.65 M 34.03 22.83 39.11 55.89
roberta-large 355.36 M 34.01 22.81 39.12 55.93

both helpful for performing event forecasting. Nevertheless, in

general, the external evolution performance is better than that

achieved when confined to an internal TKG. This proves the

value of the background information introduced by external

knowledge. We find that the internal evolution processes of

the ICEWS series datasets perform much worse than that of

the YAGO dataset, which means that the external evolution

process plays a greater role in the final forecast. Therefore, we

continue to explore the relationship between external evolution

and background information.

As shown in Figure 3, we count and compare the propor-

tions of facts facing a lack of background information in

each dataset versus the roles played by the corresponding

external evolution processes. If a forecasting fact of the test

sets does not reappear in history, it cannot obtain any back-

ground information. We express the contribution weight of the

external evolution module as the ratio of the MRR of external

evolution to the sum of the MRRs of the internal evolution and

external evolution modules. Then, a positive correlation can be

observed between the abovementioned two curves. The degree

of the lack of background information faced by the ICEWS

series datasets is larger than that of the YAGO dataset, and

thus the external evolution module plays a more important

role in these datasets. Figure 3 also demonstrates the success

and effectiveness achieved by IE-Evo through the introduction

of external background information.

D. Study on External Knowledge

Figure 3 shows the importance of external evolution. In this

section, we further perform a study on the external embeddings

in the external evolution process.

Because the static constraints of the ICEWS series datasets

preserve the learned parameters and are hard to decouple,

we perform this experiment on the YAGO dataset. In our

proposed IE-Evo model, external embeddings are introduced

by external knowledge via a PLM as the inputs of the external

GCNs. We use or exclude the external embeddings in the

external evolution process and report the metric comparison

results to study the functionality of the introduced external

embeddings. To exclude the external embeddings from the

external evolution module, we use random initialization and

retain the normal distribution according to the front-end em-

beddings, thus masking the external knowledge. As shown

in Figure 4, we report the comparisons among the Hits@10,

Hits@3, Hits@1, and MRR metrics yielded with and without

external embeddings. It can be observed that the IE-Evo model

(a) YAGO (b) ICEWS14

(c) ICEWS05-15 (d) ICEWS18

Fig. 5. Study on the role of time information evolution in terms of all the
datasets. The left y-axis and right y-axis show the performance (MRR %)
achieved by IE-Evo with and without the time cells, respectively.

performs better with the addition of external knowledge in

terms of all the metrics. This demonstrates that the external

embeddings improve the performance of the external evolution

module and the entire model.

E. Study on Different External PLMs

In this section, we continue to study the model performance

achieved on the ICEWS18 dataset after providing different

external embeddings through different external PLMs.

As Table IV shows, in addition to the bert-base-uncased

model, we also attempt other pre-trained language mod-

els (including RoBERTa [29] and BERT series models):

roberta-base 2, roberta-large 3, bert-base-cased4, and bert-large-

uncased 5. We input the same real-world textual references

of each entity into different PLMs and then obtain different

external embeddings for the corresponding entity.

For the experimental PLMs, we use their default parameter

configurations. We also report the parameter scales of different

PLMs, as shown in Table IV. We find that the experimental

results are similar across different PLMs, despite the varying

spatial complexities. Through these results, it becomes evident

that our proposed IE-Evo model exhibits remarkable autonomy,

as it does not rely on any particular pre-trained language model.

This characteristic highlights its robust ability to adapt and

perform effectively across diverse scenarios, underscoring its

strong generalization capability.

F. Study on the Evolution of Time Information

In this section, we study the functionality of the time

information evolution process in terms of all the datasets.

2https://huggingface.co/roberta-base
3https://huggingface.co/roberta-large
4https://huggingface.co/bert-base-cased
5https://huggingface.co/bert-large-uncased
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Because studies on temporal evolution (including chronolog-

ical dependencies and time information evolution) are strongly

related to the continuous development of timestamps, we per-

form experiments on the consecutive timestamps of different

datasets. As Figure 5 shows, the x-axes of different subplots

denote the forecasting timestamps, where each number denotes

a day for the ICEWS series datasets and a year for the YAGO

dataset. In addition, the experimental time period ranges from

the 183rd to the 187th forecasting timestamps of the YAGO

dataset, from the 334th to the 364th forecasting timestamps

of the ICEWS14 dataset, from the 3647th to the 4016th

forecasting timestamps of the ICEWS05-15 dataset, and from

the 270th to the 303rd forecasting timestamps of the ICEWS18

dataset. The y-axis represents the MRR metric results. In

our proposed IE-Evo model, we use an RNN and design

a time cell to capture the chronological dependencies and

time information evolution, respectively, within the internal

evolution module. Thus, we compare the model performances

achieved with and without the time cells at different forecast-

ing timestamps to study the role played by time information

evolution.

Specifically, to remove the time cells from the internal

evolution module, we randomly initialize the embeddings of

the first historical timestamp with the same normal distribution

as that of the front-end embeddings. Then, we remove the time

cells at the subsequent historical timestamps and directly feed

the output of the RNN from the previous timestamp as the

input to the GCN at the subsequent timestamp. Thus, only the

chronological dependencies of the temporal evolution process

can be modeled. As Figure 5 shows, the light gray areas

represent the complete IE-Evo model, which incorporates the

embeddings of time information through time cells during the

process of temporal evolution, while the dark gray areas repre-

sent the MRR results obtained without the time cells. IE-Evo

performs better at any single timestamp during the evolution

of time when considering the representation and evolution of

time information. This demonstrates that explicitly considering

the embeddings and evolution of time information can help the

forecasting facts to fully distinguish and utilize the information

obtained at different historical timestamps.

G. Study on Different Historical Lengths

In this section, we study the influence of different historical

sequence lengths (corresponding to the hyperparameter l) on

model performance.

As shown in Figure 6, we compare and choose the lengths of

historical subgraph sequence l from {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
according to IE-Evo’s performances of different datasets. More

specifically, we label the values of historical sequence length

at the peak MRR and Hits@1 metrics for various datasets.

It is observed that IE-Evo achieves the best performance on

the YAGO, ICEWS14, ICEWS05-15, and ICEWS18 datasets

at historical lengths of 3, 3, 9, and 4, respectively, demon-

strating that short-term historical information is sufficient to

support effective prediction. Furthermore, IE-Evo can maintain

relatively stable performance as the length of the historical

(a) YAGO (b) ICEWS14

(c) ICEWS05-15 (d) ICEWS18

Fig. 6. Study on the model performances achieved with different historical
lengths in terms of all the datasets. The left y-axis and right y-axis show the
MRR and Hits@1 values, respectively.

sequence increases without being limited to the effects of long-

term noise information. We note that the performance of IE-

Evo degrades significantly with increasing historical scope on

the ICEWS14 dataset. This may be due to the small factual

size of the ICEWS14 dataset, which leads to uncertainty in the

model performance when increasing the length of the graph

sequence modeling. In summary, IE-Evo possesses certain

stability as the historical length increases, and this capability

also corresponds to its advantage of explicitly modeling the

time information evolution in Section IV-F.

V. CONCLUSIONS

This paper proposes IE-Evo to address the lack of available

background information and the evolution of time information

in TKG forecasting. IE-Evo introduces external background

information via a PLM and models the evolution of external

knowledge. In addition, it comprehensively models the time

information-aware structural aggregation, the chronological

dependencies, and the time information evolution processes

within a TKG through an internal evolution encoder. By seam-

lessly incorporating knowledge from inside and outside TKGs

to enhance the representations of entities, IE-Evo achieves

remarkable improvements over the baseline models.
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