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Abstract—Temporal knowledge graph (TKG) reasoning has
attracted significant attention. Recent approaches for modeling
historical information have led to great advances. However, the
problems of time variability and unseen entities have become
two major obstacles preventing further development. The time
variability problem means that different historical timestamps
play different roles in the inference process. Furthermore, in
the context of time variability, the unseen entity problem means
that a query cannot obtain a predicted entity that is unseen in
the scale-varying history rather than in a fixed set, thus turning
from static to dynamic. In this paper, we propose a novel method
named DHU-NET for addressing the time variability challenge
and the dynamic unseen entity challenge derived from it. With
regard to the former concern, we propose a time-distributed
representation learning method based on a graph convolutional
network (GCN) and a self-attention mechanism, which learns
the distributed representations of facts at different historical
timestamps and comprehensively pays different levels of attention
to the different timestamps. With regard to the latter issue, we
extract the unseen entities from a global static KG based on a
copy mechanism and bring them into consideration during the
final prediction step. Experiments on six benchmark datasets
demonstrate the substantial improvements achieved by DHU-
NET in terms of multiple evaluation metrics. Our released codes
are available at https://github.com/CGCL-codes/DHUNET.

Index Terms—Temporal knowledge graph, Time-distributed
representation learning, Graph convolutional network

I. INTRODUCTION

Knowledge graphs (KGs) represent facts in triples (subject,
predicate, object). However, real-world facts are often time-

constrained. Thus, temporal KGs (TKGs) have been proposed

to address this challenge and represent facts as quadruples

(subject, predicate, object, time). For example, the quadru-

ple (Obama, Make a visit, China, 2014-11-11) means that

Obama visited China on November 11th, 2014. Nevertheless,

most TKGs in the real world are incomplete; thus, reasoning

approaches based on TKGs mainly aim to predict missing

subjects or objects.

A TKG is a series of sequential subgraphs, each of which is

static at its corresponding timestamps. Compared to previous

work [1]–[3] focusing on query (prediction) timestamp model-

ing, recent work [4]–[11] has achieved great improvements

∗Corresponding author

Fig. 1. Illustrations of the time variability challenge and the dynamic unseen
entity challenge. The dotted arrow indicates the direction of time development.

regarding the prediction of TKGs by modeling historical

sequential information. The modeling objects of these methods

mainly include the structural information contained in sub-

graphs and the sequential dependencies between subgraphs.

However, modeling history inevitably presents the chal-

lenge of time variability. As shown in Figure 1(a), the tra-

ditional codec-based static modeling strategy tends to obtain

fixed entity representations through an encoder from a scale-

invariant history and then conducts reasoning on the query

timestamp through a decoder. Nevertheless, in real scenarios,

new historical information is constantly generated with the

progression of time; that is, the previous prediction (query)

timestamp (e.g., Gpre3) is converted into a new historical

timestamp (e.g., Ghis4). Thus, it is unreasonable to ignore

the new historical information and use the previous fixed

entity embeddings. Moreover, different from the sequential

graph modeling approaches in previous work [4], [6], [8],

the sequential subgraphs all reflect the historical states of the

TKGs at a certain timestamp. Thus, for a query timestamp, the

representation of each historical temporal subgraph (such as

Ghis3, Ghis2, Ghis1, or the new historical subgraph Ghis4) plays

a larger or smaller role in the reasoning process. Nonetheless,
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Fig. 2. The framework of DHU-NET. The boxes with solid lines indicate different types of KGs (i.e., sequential subgraphs at different timestamps or static
graphs). The blue and green bars indicate the predicted positive and negative probabilities, respectively, for a query (s, p, ?, t). Arrows indicate the direction
of information transport, diamonds indicate the copy branches of a transportation vector, and dots indicate the concatenation of multiple vectors.

constrained by the codec-based framework, previously devel-

oped approaches compress time-distributed information into

low-dimensional fixed embeddings, thus resulting in the loss of

distributed information and greatly reducing the performance

of these methods. For example, the occurring fact (Man,

Diagnose−1, COVID-19, 2019-12-30) and the concomitant dis-

ease (Man, Diagnose−1, sepsis, 2021-9-20) are both likely to

become mild diseases with improved treatment; that is, (Man,

Diagnose−1, cough, 2022-5-18). Thus, the COVID-19, Sepsis,

and Cough entities should have different representations in

different periods so that they can highlight different reasonable

features for reasoning at different timestamps. Therefore, the

time variability challenge mainly includes two aspects: 1) the

challenge of constantly emerging historical information and 2)

the fact that different historical timestamps play different roles

in temporal reasoning. CEN [11] tries to solve the first-level

challenge through online training strategies but still fails to

deal with the time variability challenge at the second level.

Modeling only historical information inevitably results in

the unseen entity challenge. The static unseen entity challenge

refers to a model’s inability to obtain representations for

entities that have not been present in the history at a fixed scale.

Recent work [6], [9] limited the historical scale to the size of

the training set, and this scale remained unchanged during

inferential prediction. However, as shown in Figure 1(b), in

the context of time variability, with the development of time,

a constant change occurs from the previous prediction (query)

timestamps (e.g., Gpre1, Gpre4) to the new historical times-

tamps (e.g., Ghis4, Ghis5). Therefore, for the query timestamps

Gpre1, Gpre4, and Gpre5 at different periods, their historical

scales are constantly varying, resulting in some unseen enti-

ties becoming seen entities, and these newly generated seen

entities can be accurately represented by modeling distributed

historical information; thus, modeling them as invisible entities

would greatly degrade the performance of the model. We refer

to this problem as the dynamic unseen entity challenge.
In this paper, to address the time variability challenge and

the dynamic unseen entity challenge, we propose a TKG

reasoning method, namely, DHU-NET, which models evolu-

tionary time-Distributed information, Historical information,

and global static Unseen information.
To comprehensively address the first challenge from the

above two aspects, as Figure 2(a) shows, we design a time-

distributed representation learning method based on a graph
convolutional network (GCN) and a self-attention mecha-

nism [12]. To accurately represent the different roles played

by various timestamps, we need to simultaneously consider

the structural information contained in the subgraphs and the

time evolution information between the sequential subgraphs.

Specifically, we model the entity sequence of the temporal

subgraphs through a relational GCN (R-GCN) [13] to obtain

a distributed representation of the entities at each historical

timestamp, model the predicate sequence through a gated
recurrent unit (GRU) [14] to obtain a distributed representation

of the predicates at each historical timestamp and learn the

280

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on February 04,2023 at 01:13:35 UTC from IEEE Xplore.  Restrictions apply. 



time dependencies between the subgraphs by sequentially

passing the representation of the previous timestamp to the

next timestamp. In addition, to consider the emerging historical

information, we update the range of the historical subgraph

sequence in time with the development of query timestamps.

Finally, based on the self-attention mechanism [12], DHU-

NET allocates appropriate attention to the historical subgraph

representations at different timestamps through autonomous

learning.

To address the second challenge, as Figure 2(c) shows,

we first randomly initialize the global entities and obtain a

distributed representation of the new historical entities by

continuously modeling the latest historical timestamps. Then,

we extract unseen entities from the global static KG based

on a copy mechanism [5]. Although the historical scale is

constantly changing, the global static KG always maintains a

certain scale and preserves all the factual information.

In summary, the contributions of our work are as follows:

• Different from the traditional codec-based architecture,

we propose a time-distributed representation learning

method, which learns the distributed representations of en-

tities and predicates at different historical timestamps and

updates the historical modeling range with the evolution

of time, thus effectively overcoming the time variability

challenge during TKG reasoning.

• We first investigate the dynamic unseen entity challenge

in TKG reasoning under the context of time variability.

To address this challenge, we propose a static unseen

information passing module; instead of being limited to a

scale-varying history, this module extracts unseen entities

from the global static KG through the copy mechanism

and takes them into account during the prediction step.

• Extensive experiments on six public TKG datasets are

conducted. The improvements achieved in terms of al-

most all evaluation metrics demonstrate the effectiveness

of our method for TKG reasoning.

The remainder of this paper is organized as follows. Related

work is introduced in Section II. The proposed model is

detailed in Section III. In addition, the experimental analyses

are presented in Section IV, followed by the conclusions in

Section V.

II. RELATED WORK

TKG reasoning methods can be divided into two categories

according to whether they adapt to temporal dynamics: static

inference methods and dynamic inference methods.

1) Static Reasoning Methods: Static modeling methods

ignore the time information in TKGs, and they only deal

with fact triples, excluding the time dimension. Translation-

based methods sum the embeddings of the heads (subjects)

and relations (predicates) to make them as close as possible

to the vector of the tails (objects); such approaches include

TransE [15], TransH [16], and so on. RotatE [17] maps

entities and predicates to complex spaces and then defines

each predicate as the rotation of the complex plane from

one entity to another. In addition, ComplEx [18] performs

eigenvalue decomposition on predicate matrices in a complex

space, and DistMult [19] sets the predicate matrices to be

decomposed as diagonal matrices. Convolutional network-

based methods express the entities and predicates as two

matrices and introduce a convolution kernel to perform the

convolution operation; these approaches include ConvE [20],

ConvKB [21], and Conv-TransE [22]. GCN-based approaches,

which often act as encoders, learn the representations of the

entities in KGs by aggregating the structural information of

neighbors; representative techniques include R-GCN [13] and

Comp-GCN [23].

2) Dynamic Reasoning Methods: Considering the temporal

dynamics in TKGs, dynamic reasoning methods achieve better

performance. TTransE [2] performs inference by adding time

information to the embeddings of predicates. Deriving [24]

predicts the time ranges of the unlabeled edges. HyTE [3]

models time information as hyperplanes. TA-DistMult [1] also

integrates the temporal information of facts into the embed-

dings of predicates. However, this method cannot capture the

evolution patterns of sequential subgraphs by focusing on

the current timestamp only; thus, some recent work models

sequential history subgraphs and has been highly promoted.

RE-NET [4] models the occurrence of facts as conditional

probability based on historical sequence subgraphs with a

certain length. CyGNet [5] suppresses the role of historical

nonrepetitive facts in prediction based on a copy mechanism.

xERTE [6] generates an inference graph with a certain number

of hops. CluSTeR [7] uses reinforcement learning to extract

the related subgraphs of queries, and then the related subgraph

sequence is modeled by a GCN. RE-GCN [8] models the

evolutionary patterns of historical subgraphs via a recurrent

R-GCN and time gate units. TITer [9] uses reinforcement

learning to determine the evolution pattern in the given query

path. TLogic [10] constrains the query path based on the

temporal logic rules extracted from a temporal random walk.

However, all the above-mentioned methods ignore the time

variability problem in TKG reasoning. CEN [11] only tries to

address the challenge of newly emerging historical timestamps

via an online training strategy; it still cannot effectively model

time-distributed historical information. In addition, xERTE [6]

and TITer [9] both try to address the challenge of static unseen

entities, but they are not applicable in dynamic situations

under time-variable backgrounds and cannot deal with newly

emerging historical facts in time.

III. METHODOLOGY

In this section, we introduce the proposed DHU-NET

method. We first describe the employed notations and defi-

nitions. Then, we present the model framework and the three

modules of the model. In addition, we discuss the parameter

learning strategy and the computational complexity.

A. Definitions and Overview

1) Notations and Definitions: In a TKG G, we define the

entity set as E with a size of N , the predicate set as R with

a size of P , and the timestamp set as T with a size of T .

281

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on February 04,2023 at 01:13:35 UTC from IEEE Xplore.  Restrictions apply. 



Thus, a TKG is composed of facts in the form of quadruples

(s, p, o, t), in which {s, o} ∈ E , p ∈ R, and t ∈ T . To

facilitate modeling, a TKG can be reorganized as a sequence

of temporal static subgraphs G = {G0, G1, G3, G4, ..., GT−1},

where each static subgraph Gt is composed of triples (s, p, o)
occurring at timestamp t. In addition, we define the embedding

dimensionality as d. For each temporal subgraph Gt, we define

an entity embedding matrix as Et and a predicate embedding

matrix as Rt. In particular, we randomly initialize the input

embeddings of the entities and predicates for the first historical

timestamp as Einit and Rinit, respectively.

TKG reasoning predicts a missing object entity, (s, p, ?, t)
or predicts a missing subject entity, (?, p, o, t) at a specific

timestamp t. For each fact (s, p, o, t), we append the

inverse quadruples (o, p−1, s, t) into the TKGs; thus, the

adjacent nodes can all be expressed as in-degree forms, which

is conducive to aggregating their structural dependencies, and

the predictions of missing subjects and missing objects can be

combined into one task of predicting object entities.

2) Framework Overview: As shown in Figure 2, our pro-

posed DHU-NET model is composed of three modules.

In the time-distributed information learning module, we

model each temporal subgraph through an R-GCN [13] and a

GRU [14], and we use the embedding output of the previous

subgraph as the input of the next to model the sequential

dependencies. Then, the entity embeddings and predicate

embeddings of the corresponding knowledge subgraphs are ob-

tained. Next, following Conv-TransE [22], we input the entity

embeddings and predicate embeddings into a 1-dimensional

convolutional network and make the convolution output of the

latest subgraph exert self-attention on the convolution outputs

of all historical subgraphs. By continuously modeling the

newly emerging historical timestamps, DHU-NET can learn

accurate distributed embeddings for the newly emerging seen

entities. To consider the dynamic unseen entity problem from

the global static point of view, we initialize all the entity

embeddings in the first historical subgraph (including the

trainable seen entities and untrainable dynamic unseen entities)

so that the module can finally score all entities for queries.

In the historical information passing module, we assign

positive values to the scores of repetitive facts based on

historical frequency information, while giving lower negative

scores to historical nonrepetitive facts, which contain unseen

entities for each specific query.

In the static unseen information passing module, we extract

unseen entities at each dynamic query (prediction) timestamp

from the global static KG based on the copy mechanism [5].

Specifically, the scores of the dynamic unseen entities with low,

negative scores in the historical information passing module

are re-zeroed, and they become qualified to make inferential

predictions according to the scores obtained by the time-

distributed information learning module.

B. Time-Distributed Information Learning Module

The purpose of this module is to learn the distributed

representations of k-length historical subgraphs and their

different roles in the reasoning process. To obtain accurate

representations of the subgraphs in each timestamp, we need

to pay attention to the structural information contained in

subgraphs and the sequential dependencies between subgraphs.

1) Time-Distributed Entity Embedding Representation: For

a TKG G, its temporal subgraphs {Gi|0 ≤ i ≤ T − 1} can

be regarded as static multi-relational graphs. To aggregate the

structural information in the entity embeddings, we use a 2-

layer R-GCN to model each sequential subgraph Gi. Following

the processing strategy of RE-GCN [8], for each node (i.e.,

entity) in the graph, we aggregate its adjacent information

through the message passing architecture. Specifically, each

entity in the (l − 1)th layer aggregates the adjacent predicate

embeddings and entity embeddings according to the different

contents of the in-degree edges (i.e., predicates) and then

obtains the entity embeddings in the lth layer. Two layers of

aggregation are sufficient to capture enough structural infor-

mation for the entity embeddings. With inverse quadruples, a

temporal subgraph is actually an undirected graph, and each

predicate of an entity can be regarded as an in-degree edge:

h(l)
o =

f

⎛
⎝∑

p∈R

1

co,p

∑
s∈Ep

o

W(l−1)
p (h(l−1)

s + p(l−1)) +W
(l−1)
0 h(l−1)

o

⎞
⎠

(1)

where h(l−1)
o ∈ R

N×d indicates the embeddings of all entities

in the (l − 1)th layer of the R-GCN and h(l)
o ∈ R

N×d

indicates the embeddings of all entities in the lth layer of

the R-GCN. Ep
o indicates the set of entities that are adjacent

to the currently computed node o via edge p. h(l−1)
s and

p(l−1) indicate the embeddings of the adjacent entities and

corresponding predicates in the (l− 1)th layer of the R-GCN,

respectively. co,p is a normalization constant and represents

the size of Ep
o . f(·) represents the adopted reflected rectified

linear unit (RReLU ) activation function. W
(l−1)
p indicates

predicate-specific parameters for aggregating the structural

features according to different edges. In particular, W
(l−1)
0

indicates the parameters for aggregating the self-loop features

of all entities. Thus, for a temporal subgraph Gt, through Eq. 1,

we can obtain its entity embeddings Et at timestamp t.
To model the chronological dependencies between temporal

subgraphs, we use the embedding output of the previous

subgraph as the input of the R-GCN model at the next

timestamp:

h1
o,t = Et−1 (2)

where Et−1 ∈ R
N×d represents the output entity embeddings

of the (t− 1)th temporal subgraph (to be specific, the output

of the 2nd layer of the (t− 1)th R-GCN). h1
o,t represents the

input entity embeddings for the 1st layer of the tth R-GCN

(i.e., the tth temporal subgraph). Thus, for the queries at the

tth timestamp, we can obtain the distributed representations

of the temporal subgraph sequence with a historical length of

k as {Et−k, ..., Et−2, Et−1}.
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2) Time-Distributed Predicate Embedding Representation:
To aggregate the structural information when learning pred-

icate embeddings, we splice the mean value of the entity

embeddings of the previous temporal subgraph associated with

a predicate with the edge embeddings of the initial subgraph

as the input of a GRU cell:

Rt
input = [p;mean(Et−1, E

t−1
p )] (3)

where Rt
input ∈ R

2P×2d represents the input matrices of

the GRU cell at the tth timestamp. p ∈ R
2P×d indicates

the predicate embeddings in the input matrices of the first

historical subgraph Rinit. Et−1 ∈ R
N×d represents the entity

embeddings of the temporal subgraph at the (t − 1)th times-

tamp. Et−1
p is a set that records the related entities of specific

predicates at the (t− 1)th timestamp.

Then, we take the hidden unit output of the GRU for the

previous temporal subgraph as the hidden unit input of the

GRU for the next temporal subgraph and further model the

chronological dependencies of the predicates:

Rt
hidden = GRU(Rt

input,Rt−1
hidden) (4)

where Rt−1
hidden ∈ R

2P×d represents the predicate embeddings

(including the inverse predicates) at the (t−1)th timestamp and

can also be expressed as Rt−1. Rt
hidden ∈ R

2P×d represents

the predicate embeddings at the tth timestamp and can also be

expressed as Rt. Specifically, for k-length historical subgraphs,

the hidden unit input for the GRU cell at the 1st historical

timestamp Rt−k
hidden is Rinit.

3) Time-Distributed Attention: After obtaining the dis-

tributed embeddings of the temporal subgraphs with k-length

histories, we learn the different roles of the various timestamps

for prediction through the self-attention mechanism [12]. For

a query (s, p, ?, t), we first obtain the embeddings s and

p of its subject and predicate at the tth timestamp via the

embedding matrices Et and Rt, respectively. Then, following

Conv-TransE [22], we splice s and p and input them into

a 1-dimensional convolutional network; thus, the number of

channels in the input is 2. We set the size of the convolution

kernel to 3 × 2 and the number of channels to c = 50. To

ensure that the shape of the output tensor is consistent with

that of the input, we set the padding to 1:

xtemp = Conv1D([s; p]) (5)

where [s; p] ∈ R
2×d and xtemp ∈ R

c·d. As shown in

Figure 2(a), we convert the dimensionality of xtemp to d via

a linear function:

yτ = W1xtemp + b1 (6)

where yτ ∈ R
d represents the intermediate output at a specific

historical timestamp τ for the prediction task. W1 ∈ R
d×c·d

and b1 ∈ R
d represent the learnable parameters. Thus, for

the query (s, p, ?, t), in the k-length historical subgraph

sequence, the predicted distributed intermediate results are

expressed as {yt−k, · · · , yt−2, yt−1}. Considering that the

latest historical timestamp plays the largest role in prediction

(we prove this in Section IV-D2), we make yt−1 exert learnable

attention on all historical timestamps, including the attention

to itself. Then, we generate a query vector Q via yt−1 and key

value vectors K and V via {yt−k, · · · , yt−2, yt−1}:

Q = Wqyt−1, K = Wk[yt−k; · · · ; yt−2; yt−1] (7)

V = Wv[yt−k; · · · ; yt−2; yt−1] (8)

where Wq ∈ R
dq×d, Wk ∈ R

dk×d, Wv ∈ R
dv×d, yt−1 ∈ R

d

and [yt−k; · · · ; yt−2; yt−1] ∈ R
k×d. In practice, we set dq =

dk = dv = 64. Furthermore, the self-attention operation can

be represented as follow:

Self_Attention(Q,K,V) = Softmax(
QKT

√
dk

V) (9)

where Q ∈ R
dq , K ∈ R

dk×k, and V ∈ R
dv×k.

√
dk is a

problem-specific scaling factor used to prevent the vanishing

gradient problem. Wq , Wk, and Wv are learnable parameters

that assign learnable attention weights to each historical times-

tamp. In practice, we introduce multi-head attention and use

8 heads in our model. Then we use a feedforward network
(FFN) to introduce deep semantic information:

FFN(z) = W2(ReLU(W3z)) (10)

where z ∈ R
d is the output of the multi-head attention

mechanism. W2 ∈ R
dff×d and W3 ∈ R

d×dff are parameters,

where dff is the number of hidden units in the FFN. In

practice, we set dff = 1024. In addition, we impose residual

connections [25] and layer normalization [26] on the outputs of

the multi-head attention mechanism and the FFN, respectively.

Then, for the query (s, p, ?, t), following Conv-TransE [22],

we perform matrix multiplication on the output g and the entity

embeddings Et−1 at the latest historical timestamp:

SD = mm(g,Et−1) (11)

where g ∈ R
d and Et−1 ∈ R

d×N . Thus, SD ∈ R
N is the

score finally obtained by this module.

C. Historical Information Passing Module

This module is built to complement the features of distant

histories in terms of frequency.

As shown in Figure 2(b), for a query (s, p, ?, t), the

historical repetitive information is represented as the set

{oi|(s, p, oi) ∈ Gτ and τ < t}, and the historical nonrepet-

itive information is represented as the set {oi|(s, p, oi) /∈
Gτ and τ < t}. We use a sequence of sparse matrices with

sizes of N · P × N to store the repetitive and nonrepetitive

patterns of each temporal subgraph. Each row in the matrix is

represented as a multi-hot vector {v(s,p)i ∈ R
N |0 ≤ i ≤ T−1}.

If the fact (s, p, oj) occurred at the ith historical timestamp,

the value in the jth dimension of v
(s,p)
i is 1; otherwise, it

is 0. Thus, the extracted historical frequency information is

represented as follow:

V
(s,p)
t = v

(s,p)
0 + v

(s,p)
1 + · · ·+ v

(s,p)
t−1 (12)

where V
(s,p)
t is an N-dimensional vector, with each dimension

representing the occurrence frequency of the corresponding
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historical entity. For each query (s, p, ?, t), we extract its

complete historical frequency information to capture distant

historical features. The historical information passing module

assigns a lower negative score to a historical nonrepetitive

entity, represented as
−
V

(s,p)

t , and assigns a positive score for a

historical repetitive entity according to its frequency statistics:

+

V
(s,p)

t = Softmax(V
(s,p)
t ) · δ (13)

where Softmax(·) represents the activation function. δ is a

problem-specific constant to adjust the role of the historical

repetitive information, and we set δ = 0.5. The output score

of the historical information passing module is as follow:

SH =
−
V

(s,p)

t +
+

V
(s,p)

t (14)

D. Static Unseen Information Passing Module

The historical information passing module dynamically

assigns unseen entities lower negative scores according to

their historical frequency statistics over time. As shown in

Figure 2(c), the global static KG consists of all the facts

in TKGs without their time information; this is represented

as Gstatic = {(s, p, o)|(s, p, o, t) ∈ Gt and t ∈ [0, T − 1]}.

Although the scale of the unseen entities changes dynamically

with time, the global static KG always contains all the factual

information at different timestamps.

Similar to the processing strategy in Section III-C, we

extract the factual distribution in Gstatic with a sparse matrix

of size N · P × N . A query (s, p, ?, t) corresponds to the

(s · p)th row of the sparse matrix, which is represented as

a multi-hot vector S(s,p) ∈ R
N that records the occurrence

entities in Gstatic. Similarly, the module directly assigns lower

negative scores to entities that are not present in Gstatic:

SU = zero(S(s,p)) + (−C) (15)

where C is a constant with a large value; 200 is sufficient for

the DHU-NET model. Specifically, as shown in Figure 2, if

the query’s ground-truth entity o does not exist in the history,

different from the record in V
(s,p)
t , it has a dimension value

of 1 in S(s,p) instead. Then, the entity can avoid obtaining

a lower negative score in the historical information passing

module, which allows DHU-NET to take the dynamic unseen

entities into account during reasoning and finally obtain their

accurate representations via continuously updated k-length

history subgraph modeling in the time-distributed information

learning module.

E. Parameter Learning

For a query, we combine the scores of the three modules dur-

ing the final prediction. Thus, the time-distributed information

(including structural information and sequential dependencies),

the historical repetitive information, and the global static un-

seen information of the TKGs are simultaneously considered:

p(o|s, p, t) = SDHU = SD + SH + SU (16)

where SDHU is an N-dimensional multi-hot vector, each

dimension of which indicates the probability of predicting the

corresponding entity as the object. The prediction process can

be seen as an N -label classification problem, and we use the

cross-entropy loss for this task:

L = −
∑
t∈T

∑
i∈E

∑
j∈E

oti lnpt

(
ytj | s, p,Et,Rt

)
(17)

where oti indicates the ith ground-truth object entity in the

tth temporal subgraph Gt. pt

(
ytj | s, p,Et,Rt

)
denotes the

probability of predicting the jth entity as the object at the

tth timestamp.

F. Computational Complexity Analysis

To demonstrate the efficiency of our proposed DHU-NET,

we analyze the computational complexity of its three modules.

For the time-distributed information learning module, the time

complexity of the entity representation, predicate representa-

tion, and time-distributed attention is O(kN), O(kPn), and

O(k2d), respectively, where n is the maximum number of

entities associated with a particular edge (predicate). For the

historical information passing module, its time complexity is

O(T ). For the static unseen information passing module, its

time complexity is O(1). Thus, the computational complexity

of the DHU-NET model is O(k(N + Pn+ kd) + T ).

IV. EXPERIMENTS

In this section, we evaluate the performance of our proposed

DHU-NET model on six popular TKG datasets.

A. Experimental Setup

1) Datasets: We use six well-known TKG datasets for

evaluation, namely, YAGO [27], WIKI [24], ICEWS14 [1],

ICEWS18 [4], ICEWS05-15 [1], and GDELT [28]. YAGO

and WIKI are temporal subgraphs extracted from YAGO3 and

Wikipedia, respectively. ICEWS14, ICEWS18, and ICEWS05-

15 are extracted from the Integrated Crisis Early Warning

System [29]. GDELT records news media information about

human societal behaviors. Following previous work [4], [8],

[11], the datasets are divided into training/validation/test sets at

a ratio of 80%/10%/10%. The detailed statistics of the datasets

are presented in Table III.

2) Baseline Methods: We compare the performance of

our proposed DHU-NET model with that of multiple static

and dynamic reasoning methods. The static methods include

DistMult [19], ConvE [20], ComplEx [18], Conv-TransE [22],

RotatE [17], and R-GCN [13]. The dynamic reasoning meth-

ods include TTransE [2], HyTE [3], and TA-DistMult [1].

Some dynamic methods are available for modeling historical

information and obtaining great results, including RE-NET [4],

CyGNet [5], xERTE [6], CluSTeR [7], RE-GCN [8], TITer [9],

TLogic [10], and CEN [11]. The baseline models are detailed

in Section II.

3) Evaluation Metrics: In the experiment, we use the link

prediction task to evaluate the effectiveness of the DHU-NET

model. We use classic evaluation metrics, including the mean
reciprocal rank (MRR) and the hits at 1/3/10 (Hits@1/3/10),

which all represent the rankings of missing ground-truth
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TABLE I
PERFORMANCE (IN PERCENTAGES) ACHIEVED ON ICEWS14, ICEWS05-15, ICEWS18, AND GDELT DATASETS IN TERMS OF RAW METRICS

Method
ICEWS14 ICEWS05-15 ICEWS18 GDELT

MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

DistMult 20.32 6.13 27.59 46.61 19.91 5.63 27.22 47.33 13.86 5.61 15.22 31.26 8.61 3.91 8.27 17.04
ConvE 30.30 21.30 34.42 47.89 31.40 21.56 35.70 50.96 22.81 13.63 25.83 41.43 18.37 11.29 19.36 32.13
ComplEx 22.61 9.88 28.93 47.57 20.26 6.66 26.43 47.31 15.45 8.04 17.19 30.73 9.84 5.17 9.58 18.23
Conv-TransE 31.50 22.46 34.98 50.03 30.28 20.79 33.80 49.95 23.22 14.26 26.13 41.34 19.07 11.85 20.32 33.14
RotatE 25.71 16.41 29.01 45.16 19.01 10.42 21.35 36.92 14.53 6.47 15.78 31.86 3.62 0.52 2.26 8.37
R-GCN 28.03 19.42 31.95 44.83 27.13 18.83 30.41 43.16 15.05 8.13 16.49 29.00 12.17 7.40 12.37 20.63

TTransE 12.86 3.14 15.72 33.65 16.53 5.51 20.77 39.26 8.44 1.85 8.95 22.38 5.53 0.46 4.97 15.37
HyTE 16.78 2.13 24.84 43.94 16.05 6.53 20.20 34.72 7.41 3.10 7.33 16.01 6.69 0.01 7.57 19.06
TA-DistMult 26.22 16.83 29.72 45.23 27.51 17.57 31.46 47.32 16.42 8.60 18.13 32.51 10.34 4.44 10.44 21.63

RE-NET 35.77 25.99 40.10 54.87 36.86 26.24 41.85 57.60 26.17 16.43 29.89 44.37 19.60 12.03 20.56 33.89
CyGNet 34.68 25.35 38.88 53.16 35.46 25.44 40.20 54.47 24.98 15.54 28.58 43.54 18.05 11.13 19.11 31.50
xERTE 32.23 24.29 36.41 48.76 38.07 28.45 43.92 57.62 27.98 19.26 32.43 46.00 17.69 11.81 19.68 30.10
CluSTeR 46.00 33.80 - 71.20 44.60 34.90 - 63.00 32.30 20.60 - 55.90 18.30 11.60 - 31.90
RE-GCN 41.25 30.46 46.26 62.05 45.61 34.43 51.85 66.64 30.79 20.06 35.22 51.77 19.37 12.02 20.74 33.64
TITer 40.90 31.77 45.84 57.67 46.62 36.46 52.29 65.23 28.44 20.06 32.07 44.33 - - - -
TLogic 41.80 31.93 47.23 60.53 45.99 34.49 52.89 67.39 28.41 18.74 32.71 47.97 - - - -
CEN 41.64 31.22 46.55 61.59 49.57 37.86 56.42 71.32 29.70 19.38 33.91 49.90 21.22 13.19 23.04 36.95

DHU-NET 62.01 47.74 71.71 88.39 56.52 42.88 64.89 82.38 47.44 33.17 54.75 76.17 27.06 16.51 29.52 48.80

TABLE II
PERFORMANCE (IN PERCENTAGES) ACHIEVED ON YAGO AND WIKI

DATASETS IN TERMS OF RAW METRICS

Method
YAGO WIKI

MRR Hits@3 Hits@10 MRR Hits@3 Hits@10

DistMult 44.05 49.70 59.94 27.96 32.45 39.51
ConvE 41.22 47.03 59.90 26.03 30.51 39.18
ComplEx 44.09 49.57 59.64 27.69 31.99 38.61
Conv-TransE 46.67 52.22 62.52 30.89 34.30 41.45
RotatE 42.08 46.77 59.39 26.08 31.63 38.51
R-GCN 20.25 24.01 37.30 13.96 15.75 22.05

TTransE 26.10 36.28 47.73 20.66 23.88 33.04
HyTE 14.42 39.73 46.98 25.40 29.16 37.54
TA-DistMult 44.98 50.64 61.11 26.44 31.36 38.97

RE-NET 46.81 52.71 61.93 30.87 33.55 41.27
CyGNet 46.72 52.48 61.52 30.77 33.83 41.19
xERTE 64.29 74.50 87.38 52.85 60.96 71.89
RE-GCN 62.50 70.24 81.55 50.99 57.34 68.50
TITer 64.97 74.80 87.44 57.36 63.80 72.52
CEN 63.39 71.68 83.16 51.98 58.96 70.61

DHU-NET 67.36 76.52 92.63 56.18 64.57 82.73

entities in the prediction results. For a query, we report the

mean results of the subject entity prediction and object entity

prediction tasks. For the YAGO and WIKI datasets, following

the prior work related to RE-GCN [8], we only report the

MRR, Hits@3, and Hits@10 results.

During the evaluation, although the time-aware filtered

setting is widely used, its rationality is seriously affected by the

time granularity of TKGs. For example, in the ICEWS series

of datasets with a time granularity of 1 day (24 hours), the

one-to-many relational query (Police (Australia), Investigate,

?, 2014-12-01) has a limited number of conflicting entities

(women (Australia) and citizen (Australia)). However, for the

YAGO or WIKI dataset with a granularity of 1 year, the

one-to-many or many-to-one relational queries might lead to

more conflicting entities, such as the query (Ignác Gyulay,

hasWonPrice, ?, 1814). General Ignác Gyulay had won the

prizes of the Order of Leopold (Austria), the Military Order

of Maria Theresa, the Order of Saint Stephen of Hungary,

and the Order of the Red Eagle in 1814. The time-aware

TABLE III
DETAILS OF THE TKG DATASETS

#Datasets #Entities #Predicates #Training #Validation #Test #Granularity

ICEWS14 6,869 230 74,845 8,514 7,371 24 hours
ICEWS18 23,033 256 373,018 45,995 49,545 24 hours
ICEWS05-15 10,094 251 368,868 46,302 46,159 24 hours
YAGO 10,623 10 161,540 19,523 20,026 1 year
WIKI 12,554 24 539,286 67,538 63,110 1 year
GDELT 7,691 240 1,734,399 238,765 305,241 15 mins

filtered setting filters all conflicting entities and only keeps

the ground-truth entity, thereby avoiding the need to evaluate

the processing capabilities of methods for one-to-many or

many-to-one queries. Especially for datasets with larger time

granularities, the queries have more candidate answers, such

as the four awards won by General Ignác Gyulay. Through

the above processing approach, the time-aware filtered setting

yields better results. Nevertheless, effectively distinguishing

and predicting the conflicting facts of a query should be one

of the abilities of a TKG reasoning model and thus should

be considered in the model performance evaluation. Without

loss of generality, we do not perform the filtered operation and

report the results obtained under the raw setting instead.

4) Implementation Details: We implemented our DHU-

NET model in PyTorch and trained the model on a GPU

(Tesla V100). We configured the parameters based on the

MRR performance achieved by the model on the validation

set and set the training epoch for all datasets to 250 to ensure

model convergence. In addition to the parameters introduced in

Section III, the historical length k of the modeling sequence is

set to 3 for all the datasets. For the R-GCN, we set the dropout

rate of each layer to 0.2. For Conv1D, the number of kernels

is set to 50, and the dropout rate is also set to 0.2. For the

multi-head attention mechanism, the number of layers is set

to 1, which is sufficient for the current task. We use the Adam

optimizer for parameter learning, and the learning rate is set

to 0.001. The batch size is set to the size of each timestamp

for both training and testing. For the static reasoning methods,

the time dimension is removed from all the TKG datasets. We

285

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on February 04,2023 at 01:13:35 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 3. Statistics regarding the ground-truth facts in
the WIKI dataset at different historical timestamps Fig. 4. Study on the roles of different historical

timestamps in all the datasets
Fig. 5. Study on the global static unseen information
in all the datasets

Fig. 6. Study on the newly emerging
historical information in the YAGO
dataset

Fig. 7. Statistics on the seen entities
in different query timestamp periods
of the ICEWS18 dataset

set the embedding dimensionality to 200 to be consistent with

the experimental settings in RE-GCN [8]. Some of the baseline

results are adopted from [8].

For the important xERTE [6], RE-GCN [8], TITer [9],

TLogic [10], and CEN [11] baseline works, we use their

default parameters and replicate the results obtained under raw

settings with their open codes. For CluSTeR [7], we report the

results presented in their paper because the model is not open

source. For CEN [11], we report the results obtained under the

online setting. For TITer [9], their codes crash when running

on the largest GDELT dataset. TLogic [10] cannot process

datasets other than the ICEWS series because it needs the

content references of entities and predicates. Moreover, for

the ICEWS14 and ICEWS05-15 datasets, since we adopt a

different dataset splitting strategy than that of TLogic [10], we

reorganize these datasets into the input format of the TLogic

model for a consistent experimental configuration.

B. Results of TKG Reasoning

In this section, we compare the performance of DHU-NET

with that of static and dynamic reasoning methods based on

the TKG link prediction task.

TABLE IV
ABLATION STUDY RESULTS (IN PERCENTAGES) OBTAINED ON YAGO,

WIKI, ICEWS14, AND ICEWS18 DATASETS

Datasets YAGO WIKI ICEWS14 ICEWS18

Time Distributed information learning module 60.76 49.73 34.75 25.53
Historical information passing module 61.75 43.93 35.42 24.89
Static Unseen information passing module 58.37 45.20 56.54 39.85

DHU-NET 67.36 56.18 62.00 47.44

TABLE V
STATISTICS (IN PERCENTAGES) OF THE DYNAMIC UNSEEN ENTITIES IN

ALL THE DATASETS

Datasets YAGO WIKI ICEWS14 ICEWS05-15 ICEWS18 GDELT

Whole set 9.96∗ 4.78 55.38 36.14 56.84 42.59
Test set 7.27∗ 12.96 47.63 31.61 49.57 35.07

Table I and Table II show the best results in boldface and

the second-best results as underlined. The performance of

DHU-NET is much better than that of the static reasoning

methods because the static models completely ignore the time

information of TKGs. However, some dynamic methods, such

as TTransE [2] and HyTE [3], perform even worse than the

static methods because they only focus on the embedding

of time information while ignoring the evolutionary patterns

of historical subgraphs. Compared with the RE-NET [4],

CyGNet [5], xERTE [6], CluSTeR [7], RE-GCN [8], TITer [9],

and TLogic [10] history-based methods, DHU-NET still per-

forms better because these approaches all ignore the time

variability problem of temporal reasoning.

Although CEN [11] tries to address the challenge of newly

emerging items through the online training strategy, it ignores

the different roles that different historical timestamps play

in the prediction process. DHU-NET performs better than

methods that addressing the challenge of unseen entities, such

as xERTE [6] and TITer [9]. This is because both of these

competitors believe that history is constant and ignore the time

variability feature of histories, thus failing to solve the problem

regarding dynamic unseen entities. We note that DHU-NET
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performs slightly worse than TITer [9] in terms of the MRR

metric, as described in CEN [11], because TITer [9] adopts

reinforcement learning and ranks missing ground-truth entities

based on candidate sets that are much smaller than the size of

the entity set, which likely results in better performance.

C. Ablation Study

In this section, we conduct an ablation test based on the

YAGO, WIKI, ICEWS14, and ICEWS18 datasets. We only

report the most representative MRR metric.

As shown in Table IV, similarly, the best results are

bolded, and the second-best results are underlined. It can

be observed that the evolutionary time-distributed structural

information and the global static unseen information play

certain roles in the performance of DHU-NET. The module

with the most critical role differs for different datasets. For

the YAGO dataset with more historical repetitive information,

the frequency statistics for repetitive entities throughout history

are prominent; thus, the historical information passing module

tends to contribute more functionality. However, when less

repetitive information and unseen information are involved

(such as in the WIKI dataset), the role of the time-distributed

information learning module is highlighted. When the dataset

contains more historical unseen entities (such as the ICEW14

and ICEWS18 datasets), the static unseen information passing

module plays a more important role. In particular, the perfor-

mance of the complete DHU-NET model is better than that

of any single module, which demonstrates the effectiveness

of considering the time-distributed information, the historical

repetitive information, and the global static unseen information

simultaneously for TKG reasoning.

D. On the Time Variability

In this section, we study the ability of DHU-NET to resolve

the time variability problem in terms of two aspects.

1) On the Newly Emerging Historical Information: As

Figure 6 shows, we use each query timestamp (except for the

188th timestamp with only one fact) of the YAGO dataset as

a separate research object and report the MRR metrics yielded

by DHU-NET with and without newly emerging historical

information. The dark gray area only uses the training set and

validation set as a fixed historical scope. Instead, the light

gray area represents the proposed DHU-NET. We do not add

static unseen information to intuitively reflect the effect of the

new historical information. At the 183th timestamp next to

the validation set, the historical ranges of the two comparison

objects are consistent, as is the corresponding MRR metric.

With the development of time, previous models are limited to

a fixed historical range because they ignore the time variability

phenomena. However, DHU-NET continuously updates the

latest historical range and models the emerging historical

information in time, thereby achieving better performance for

subsequent query (prediction) timestamps.

2) On the Distinct Roles of Historical Timestamps: We

define the numbers of ground-truth facts contained in dif-

ferent historical timestamps as the ground-truth effects of

these historical timestamps on a query. As Figure 3 shows,

we calculate statistics regarding the ground-truth effects of

different historical timestamps on the query timestamps, where

a number along the horizontal and vertical axes represents a

year. It is observed that different historical timestamps play

different roles in the prediction.

As shown in Figure 4, we further study the distinct roles

of the historical timestamps on all six datasets. Because the

historical length of the DHU-NET model is set to 3, we

report the MRR metrics for three separate latest historical

timestamps and the time-distributed strategy. In addition, -1st,

-2nd, and -3rd represent the last, second, and third historical

timestamps, respectively. It is observed that the contribution of

the historical timestamps to the prediction process decreases as

the distance from the query timestamp increases. Accordingly,

the latest historical timestamps are the most valuable, which

also demonstrates the importance of keeping the newly emerg-

ing historical information in mind. However, the performance

of the time-distributed strategy is better than that of any

single historical timestamp. This proves that although the latest

historical timestamps are generally more powerful, different

historical timestamps still hold different pieces of information

that are useful for prediction, and the time-distributed strategy

successfully captures their distributed features.

E. On the Global Static Unseen Information

In this section, we study the proposed DHU-NET model’s

ability to resolve dynamic unseen entity issues by capturing

the global static unseen information.

We first study the scales of the seen entities for different

query timestamps in the ICEWS18 dataset. We start with the

first query (prediction) timestamp and count the number of

seen entities associated with the queries. If a query fact appears

in the scale-varying history, it can obtain useful information

to complete the missing subject or object. Then, the subject

and object entities are seen in the current time period. As

Figure 7 shows, we use the horizontal axis to represent a

certain time period (each number represents 24 hours a day),

and the vertical axis to represent the number of seen entities.

Thus, the seen entity set accumulates and increases over time.

Therefore, setting the unseen entity set to a fixed value will

result in inaccurate representations of the seen entities.

We count the proportions of queries facing the dynamic

unseen entity dilemma on all datasets. As shown in Table V,

the largest value is bolded, the second-largest value is under-

lined, the smallest value is starred, and the 0th timestamp is

not considered when calculating the statistics of the whole

dataset. Then as shown in Figure 5, we sort the datasets from

small to large in terms of their dynamic unseen entity scales

and compare the performances achieved by the DHU-NET

model with and without the static unseen information passing

module. DHU-NET yields improvements on all datasets due to

the resolution of the dynamic unseen entity issue. In particular,

the extents to which different datasets are improved correspond

to the scales of the dynamic unseen entities. In addition, on

the largest GDELT dataset, although sizable dynamic unseen
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entities remain, the improvement achieved by the model is still

limited due to the difficulty inherent in handling this dataset.

V. CONCLUSIONS

In this paper, we propose DHU-NET to address the chal-

lenges of time variability and dynamic unseen entities in

TKG reasoning. DHU-NET comprehensively models the dis-

tributed roles of each historical timestamp via time-distributed

representation learning. Besides, it accounts for predictions

by extracting dynamic unseen entities from the global static

KG. Our extensive experiments demonstrate its significant

improvement over baseline models.
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