
RETIA: Relation-Entity Twin-Interact Aggregation
for Temporal Knowledge Graph Extrapolation

Kangzheng Liu†‡, Feng Zhao†∗, Guandong Xu‡, Xianzhi Wang‡, and Hai Jin†
†National Engineering Research Center for Big Data Technology and System

Services Computing Technology and System Lab, Cluster and Grid Computing Lab
School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, China

‡Data Science and Machine Intelligence Lab, University of Technology Sydney, Sydney, Australia
†{frankluis, zhaof, hjin}@hust.edu.cn, ‡{guandong.xu, xianzhi.wang}@uts.edu.au

Abstract—Temporal knowledge graph (TKG) extrapolation
aims to predict future unknown events (facts) based on historical
information, and has attracted considerable attention due to
its great practical significance. Accurate representations (embed-
dings) of entities and relations form the basis of TKG extrapola-
tion. Recent work has been devoted to improving the rationality
of entity representations. However, on the one hand, ignoring
relation modeling results in incomplete relation representations;
therefore, some approaches aggregate only immediately adjacent
entities of relations, but this can lead to the "message islands"
problem of relation modeling. On the other hand, ignoring the as-
sociation constraints between relations and entities can make the
embeddings of both relations and entities prone to overfitting. To
address the abovementioned challenges, we propose an advanced
method, namely, RETIA. For the former issue, we generate
twin hyperrelation subgraphs for each historical subgraph and
then aggregate both the adjacent entities and relations in the
hyperrelation subgraphs through a graph convolutional network
(GCN). About the latter concern, we propose a twin-interact
module (TIM), which provides communication channels for
relation aggregation and entity aggregation during the evolution
of the historical sequence. Experiments conducted on five public
datasets show that RETIA has made great improvements across
several evaluation metrics. Our released code is available at
https://github.com/CGCL-codes/RETIA.

Index Terms—Temporal knowledge graph extrapolation, Twin-
interact aggregation, Graph convolutional network

I. INTRODUCTION

Temporal knowledge graphs (TKGs) indicate facts as
quadruples (subject, relation, object, time) and are actually
sequences of temporal subgraphs divided by the time (times-
tamp) dimension. TKG extrapolation involves the prediction
of incomplete facts in future subgraphs, including missing
entities and missing relations, by modeling the subgraphs of
historical timestamps. Due to its great practical significance,
TKG extrapolation is widely used in scenarios such as stock
forecasting [1] and crisis forewarning [2].

TKG extrapolation has recently become a research hotspot.
A great deal of work [3]–[7] has been done regarding entity
forecasting research, which has improved remarkably. For
example, RE-NET [3] models the evolution of an entity repre-
sentation over time through a recurrent neural network (RNN),

∗Corresponding author

Encoder Decoder

Entity

Relation

Entity Embedding

Relation Embedding

(s, ?, o, t)

(s, r, ?, t)

(?, r, o, t)

(a) An illustration of the role of relation embeddings.

s

(b) An illustration of aggregating neighborhood information for 

entities and relations.

Evolution of Time…… ……

Fig. 1. An illustration of relation embedding and adjacent information
aggregation for entities and relations

and CEN [7] follows RE-GCN [8] to model the temporal entity
evolution processes via a recurrent relational GCN (R-GCN).
However, few studies have modeled relation representations.
As Figure 1(a) shows, the common approaches are codec-
based architectures. Using encoders, we obtain the relation
embeddings and entity embeddings; then, through decoders,
incomplete facts at a future timestamp t can be forecast. On
the one hand, for future relation forecast (s, ?, o, t), we need
not only the embeddings of entities o and s at future timestamp
t but also the representations of all relations in a score function
of the quadruples to calculate the forecasting scores; thus,
inappropriate relation embeddings directly cause the model
to confuse the relations in the candidate set and be unable to
forecast the missing relations. On the other hand, for future
entity forecast (s, r, ?, t) or (?, r, o, t), relation embeddings
also act as the inputs of the decoders, in turn affecting the
accuracy of the calculated entity scores. Therefore, that is
critical to obtain appropriate representations of relations and
entities through encoders.

A series of studies [7]–[11] has shown that aggregating
adjacent structure information is essential for the process of
learning embeddings. As shown in Figure 1(b), according
to the research on GCNs [9], [10], [12] for relational data,
to obtain an accurate representation of entity s, we need
to aggregate the relation-connected adjacent entities {r1 :



{o1, o3, o4}, r2 : o2} of entity s. Despite the maturity of entity
aggregation approaches, little work thus far has focused on
aggregating adjacent information for relations in the scenarios
of temporal dynamics. RE-GCN [8] only tries to model the
embeddings of a relation r1 via the immediately adjacent
entity information {o1, o3, o4}; it ignores the more important
adjacent relation information {r′

2, r
′

1, r
′

4}. On the one hand,
from the expression of a specific relation, the adjacent relation
information is located at the same representation level as the
modeled relation r1, so its importance in relation aggregation
is no less than that of the adjacent entity information in entity
aggregation. On the other hand, it is difficult to simultaneously
consider the adjacent information integrity of relation aggre-
gation with the traditional entity-centric modeling strategy. As
shown in Figure 1(b), in the relation modeling of temporal
dynamic scenarios, if the update of relation r1 is taken as an
example, when the adjacent relation r

′

1 of relation r1 passes
messages by entity o3, o3 should be updated. At this time,
entity o3 acts as not only the message receiver of relation
r
′

1 but also the message sender of relation r1. Therefore, the
update of o3 implies a bridge for message passing between the
two relations r1 and r

′

1. In contrast, some of the latest works,
such as RE-GCN [8] and TiRGN [12], aggregate only the
immediately adjacent entity information of relations. Under
these circumstances, as Figure 1(b) shows, the relations r1
and r

′

1 both require the aggregation of the adjacent entity
o3; then, as the aggregated object, o3 is always the sender
of the message-passing process and thus cannot receive a
new message and update the embeddings. Therefore, messages
from relations (e.g., r1 or r

′

1) can never cross the immediately
adjacent entities and propagate to outer relations (e.g., r

′

1 or
r1), which we call the "message islands" problem in relation
modeling. The message islands in the subgraphs are centered
on different relations and bounded by the entities immediately
adjacent to them, thereby aggravating the incompleteness of
the relation representations.

As Figure 1(b) shows, to obtain an accurate representation
of the relation r1 and the entity s, the entity-connected adjacent
relations {o1 : r

′

2, o3 : r
′

1, o4 : r
′

4} of relation r1 and the
relation-connected adjacent entities {r1 : {o1, o3, o4}, r2 : o2}
should be aggregated. In contrast to focusing on only a
particular static subgraph, the association constraints refer to
the fact that the embeddings of entities o1, o3, and o4 at the
previous timestamp need to be involved in the update of the
relation embedding r1 at the next timestamp, and the relation
embeddings r1 and r2 at the previous timestamp need to be
involved in the update of the entity embedding s at the next
timestamp. If the embeddings of relations and entities are
considered only in parallel without consideration of the tem-
poral interactions between them, the resulting representation
becomes unreasonable due to an overfitting tendency. In TKGs,
the modeling of the association constraints between entities
and relations is closely related to the evolution of historical
sequences. For example, following RE-GCN [8], TiRGN [12]
updates the relation embeddings of the next historical subgraph
with the mean-pooled one-hop entities of the previous historic

subgraph and models the evolutionary constraints between
entities and relations using a gated recurrent unit (GRU) [13].
However, both approaches ignore the relative positional as-
sociations between edges (relations) and nodes (entities). As
shown in Figure 1(b), entity o1 acts both as an in-degree node
for the relations r1 and r

′

1; nevertheless, entity o4 acts as
an in-degree node for relation r

′

4 but as an out-degree node
for relation r1. Therefore, the message interactions between
relations and entities are constrained by the positional structure
between them.

In this paper, we propose an advanced TKG extrapolation
method, namely, Relation-Entity Twin-Interact Aggregation
(RETIA). To prevent message islands, we need to aggregate
the complete adjacency information of the relations as entities;
thus, we propose a relation aggregation module (RAM). As
shown in Figure 2(a), we first map the relations in the original
historical subgraph to those in a twin hyperrelation subgraph
and then generate hyperrelations between the relations based
on their entity-connected positional neighborhood. Then, we
aggregate the complete adjacent information of the relations in
the sequential hyperrelation subgraphs based on the relation-
aggregating R-GCN [9] and a residual GRU [13] (R-GRU).
On the other hand, to account for the association constraints
between entities and relations, we propose a twin-interact
module (TIM). As Figure 2(b) shows, we continuously trans-
mit the embeddings of the entities of the previous historic
subgraph from the entity aggregation module (EAM) to the
RAM and participate in updating the relation and hyperrelation
embeddings in the next historical hyperrelation subgraph. The
relation embeddings in the previous historical hyperrelation
subgraph are passed from the RAM to the EAM and participate
in the aggregation of the entities in the next historic subgraph.
In particular, we aggregate the relation embeddings to update
the associated hyperrelation embeddings via hyper mean pool-
ing and use hyper long short-term memory (LSTM) [14] to
model the temporal evolution of the hyperrelations, which
present the positional association constraints between the
relations and entities.

The contributions of our work are summarized as follows:

• To overcome the "message islands" problem and obtain
accurate relation embeddings, we propose a RAM, that
aggregates not only the immediately adjacent entities
but also the adjacent relations of the relations in the
hyperrelation subgraph.

• To capture the association constraints between the re-
lations and entities in TKGs, especially the positional
association constraints, we propose a TIM, which evo-
lutionally models the interactions of the vector flows
between the RAM and EAM.

• Substantial experiments are carried out on five well-
known TKG datasets. The improvements achieved in
terms of almost all performance metrics demonstrate the
effectiveness of RETIA for TKG extrapolation.

The remaining part of this paper is structured as follows.
Related work, including that on existing static and dynamic



Entity-Aggregating R-GCN

……

……

(c) Entity Aggregation Module (EAM)M)

(a) Relation Aggregation Module (RAM)

(b) 

Twin-Interact

Module

(TIM)

Relation-Aggregating R-GCN

Mean Pooling

Hyper Mean Pooling

LSTM

Hyper Mean Pooling

Mean Pooling

Hyper Mean Pooling

Entity-Aggregating R-GCN Entity-Aggregating R-GCN

LSTM LSTM

……

Relation-Aggregating R-GCN Relation-Aggregating R-GCN

Time-variability R-decoder

Time-variability E-decoder

Scores for Entity 

Extrapolation

Scores for Relation 

Extrapolation

Mean Pooling

Hyper LSTM Hyper LSTM Hyper LSTM

AM)

Fig. 2. The framework of our RETIA model. The blue, orange, and green bar lines indicate the transmission of the relation, entity, and hyperrelation
embeddings, respectively. The leftmost dashed lines represent the mapping of the relations from the original subgraphs to the hyperrelation subgraphs.

extrapolation methods for TKGs, is discussed in Section II.
Section III represents the RETIA model in detail. In addition,
Section IV contains the experimental analyses, which are
followed by the conclusion in Section V.

II. RELATED WORK

Existing approaches to event forecasting over TKGs can be
divided into two categories according to their data modeling
techniques: static strategies and dynamic strategies.

1) Static Modeling: Static modeling methods do not take
temporal dynamics into consideration. Translation-based meth-
ods include TransE [15] and TransH [16]; they map relations
and entities onto a low-dimensional vector space. The ma-
trix decomposition-based methods include DistMult [17] and
ComplEx [18]. DistMult [17] models a relation as a matrix
of linear transformations in a vector space. ComlpEx [18]
extends the original representation learning paradigm to a
complex space. ConvE [19] introduces 2D convolution for
knowledge embeddings. Conv-TransE [20] preserves the trans-
lational property of embeddings based on ConvE. Rotation-
based methods include RotatE [21], which models relations
as rotations from subject entities to object entities. Traditional
static methods learn the embeddings of relations and entities
simultaneously in a unified low-dimensional space. However,
some early GCN-based methods conduct information aggre-
gation for only entity representations. R-GCN [9] adopts
the concept of relation basis to assist in aggregating the
neighborhood information for entities. Then, some advanced
work models relation representations. Comp-GCN [10] utilizes
entity-relation composition operations to jointly learn both
edges and nodes in a specific graph. StarE [22] (an improved

version of Comp-GCN) introduces a representation strategy
for hyperrelational graphs.

Compared to previous work on relation aggregation, our
proposed RETIA features the following major differences.
1) Comp-GCN is an aggregation model for static graphs.
However, RETIA is an extrapolation framework for a sequence
of static graphs (i.e., TKG) considering temporal dynamics.
2) StarE associates additional information (tuples of key-
value pairs, called statement qualifiers) with main triples to
disambiguate or constrain the rationality of a triple fact under
different circumstances. The hyperrelational KGs it can model
consist of facts with high-dimensional representations, such
as (s, r, o, (qr1, qv1), (qr2, qv2), ...), where the tuple (qri, qvi)
refers to qualifier pairs. It is generally used for representation
learning of high-dimensional KGs but does not exactly fit
temporal scenarios. For example, real-world facts (s, r, o) are
generally valid for a certain timestamp range [t0, t2], then the
representation of (s, r, o, (time, t0), (time, t1), (time, t2)) is
still essentially a compression of temporal information into a
static graph for message passing. Thus, neither the evolution
of the temporal information {t0, t1, t2} nor the structural
dependencies between timestamps can be taken into account.
3) RETIA depicts each timestamp as a separate static subgraph,
in which case the facts (s, r, o, t0), (s, r, o, t1), (s, r, o, t2) are
on the subgraphs Gt0 , Gt1 , and Gt2 , respectively. The hyperrela-
tion subgraphs consist of relation nodes and hyperrelations that
express the relative positions between entities and relations.
In summary, it focuses on solving the challenges of relation
aggregation integrity and positional association constraint in
temporal dynamic scenarios.



2) Dynamic Modeling: With dynamic methods, time in-
formation is modeled in two scenarios: interpolation and
extrapolation. The methods that operate under the interpolation
setting use global resources (past and future) to make pre-
dictions about current facts; examples include TTransE [23],
HyTE [24], and TA-DistMult [25]. TTransE [23] and TA-
DistMult [25] integrate time information into the relation
embeddings of the corresponding occurring facts. HyTE [24]
projects relations and entities to time-specific hyperplanes. In
the extrapolation setting, the forecast facts correspond to a
future timestamp, and only historical information is available;
i.e., unknown future events are forecast. RE-NET [3] models
historical information as conditional probabilities. CyGNet [4]
uses a copy mechanism to extract one-hop repetitive enti-
ties from historical data. xERTE [5] constructs an inference
graph for a query subgraph. TITer [6] extracts candidate
paths through reinforcement learning. CluSTeR [26] also ex-
tracts query-related subgraphs through reinforcement learning
and then models candidate entity embeddings with a GCN.
TLogic [27] generates query paths based on temporal logic
rules. To address time-variability issues, CEN [7] proposes
an online learning strategy; DA-Net [28] designs a distributed
attention mechanism; and DHU-NET [29] proposes a time-
distributed representation learning method. Nevertheless, these
approaches fail to model relation representations for the follow-
ing two reasons. First, different from a static modeling strategy,
in dynamic modeling, the timestamps separate TKGs into
independent subgraph spaces.Second, the connections between
different subgraph spaces require explicit temporal evolution
modeling. However, the abovementioned methods lack loss
designs and thus cannot explicitly model relations.

RE-GCN [8] and TiRGN [12] both model relation repre-
sentations and the association constraints between only rela-
tions and the entities immediately adjacent to them via mean
pooling and a GRU [13], respectively. Therefore, they still
fail to aggregate outer adjacent relation information, resulting
in "message islands" and positional association constraints
between the relations and entities. Our proposed RETIA is an
extrapolation method that aggregates the complete adjacent
information of relation nodes in hyperrelation subgraphs to
overcome the problem of message islands in the context of the
relation modeling of temporal dynamics and models positional
association constraints on the basis of common association.

III. THE RETIA MODEL

In this section, we detail the proposed RETIA model.

A. Notations and Definitions

Table I provides the set of notations and the corresponding
descriptions adopted in our RETIA model. Note that for the
hyperrelation facts (rs, hyper-r, ro, t) in HGt, the relations rs
and ro are mapped from the original subgraph Gt, and hyper-
r is generated according to the relative positions among the
entities and relations. Formally, for a future subgraph Gt+1 at a
specific timestamp t+1 ∈ [0, T -1], TKG interpolation involves
predicting incomplete facts given the global information of

TABLE I
SET OF NOTATIONS USED IN THE RETIA MODEL.

Notations Descriptions
G A TKG
E Entity set of G
R Relation set of G
HR Hyperrelation set of G
T Timestamp set of G
N Number of entities (Size of E)
M Number of relations (Size of R)
H Number of hyperrelations (Size of HR)
T Number of timestamps (t ∈ {0, ..., T -1})
Gt A temporal subgraph composed of facts (s, r, o, t)
HGt Twin hyperrelation subgraph of Gt composed of

hyperrelation facts (rs, hyper-r, ro, t)
d Embedding dimensionality
k Length of the historical subgraph sequence

Et Entity embedding matrix of Gt

Rt Embedding matrix of all the relations in Gt and HGt

HRt Embedding matrix of all the hyperrelations in HGt

E0 Input embedding matrix of all the entities for the first
historical timestamp

R0 Input embedding matrix of all the relations for the first
historical timestamp

HR0 Input embedding matrix of all the hyperrelations for
the first historical timestamp

all the temporal subgraphs {Gτ |0 ≤ τ ≤ T -1}. In contrast,
TKG extrapolation involves forecasting a missing object en-
tity (s, r, ?, t+1), a missing subject entity (?, r, o, t+1), or a
missing relation (s, ?, o, t+1) according to previous historical
k-length temporal subgraphs {Gτ |t-k+1 ≤ τ ≤ t}. For the
original quadruples (s, r, o, t) and hyperrelation quadruples
(rs, hyper-r, ro, t) at any timestamp t, the inverse relation facts
(o, r−1, s, t) and the inverse hyperrelation facts (ro, hyper-
r−1, rs, t) are added to the tth subgraph and hyperrelation
subgraph, respectively; thus, only the in-degree edges need to
be considered, and the actual numbers of modeled relations
and hyperrelations are 2M and 2H .

B. Architecture Overview

As Figure 2 shows, our proposed RETIA is composed of the
RAM, EAM, and TIM. For an entity or relation forecasting
task at a future timestamp t+1, as Figure 2(a) shows, to solve
the relation aggregation integrity and positional association
constraint of temporal dynamics, we need to first determine
the hyperrelations according to their relative positions between
relations and entities. In the RAM, to address message islands
in relation aggregation for temporal scenarios, we aggregate
both the neighboring entity and relation information of the
relations, rather than merely the immediately adjacent entities
of the relations. Instead of limiting ourselves to the origi-
nal entity-centric subgraphs, we use relation-aggregation R-
GCN [9] in the k relation-centric hyperrelation subgraphs
to solve this problem. The TIM is responsible for modeling
the association constraints between the RAM and EAM in
the historical sequence, especially the positional association
constraints. Mean pooling is used to establish a common
association between the entity embeddings of the previous
timestamp and the relation embeddings of the next timestamp,
and then LSTM [14] is used to model the evolution of



TABLE II
ILLUSTRATIONS OF THE HYPERRELATIONS.

Hyperrelations Positional association constraints

o-s The object of relation rs is the subject of relation ro
s-o The subject of relation rs is the object of relation ro
o-o The relations rs and ro have the common object
s-s The relations rs and ro have the common subject

this common association. Hyper mean pooling is used to
further establish the positional association between relation
embeddings and hyperrelation embeddings, and then hyper
LSTM [14] is used to model the evolution of the positional
association.

C. Relation Aggregation Module (RAM)

As the left part of Figure 2 shows, for each subgraph
Gt of the k-length historical sequence, we generate a twin
hyperrelation subgraph HGt. According to previous work [30],
we define HR = {o-s,s-o,o-o,s-s}. Each hyperrelation demon-
strates the entity-connected relative position between the two
specific relations rs and ro. We present illustrations of the four
types of hyperrelations in Table II. Specifically, as shown in Al-
gorithm 1, for historical subgraph Gt at a specific timestamp t,
we first traverse all the quadruples of the subgraph to obtain the
relation-object adjacency matrix ROt and the relation-subject
adjacency matrix RSt. Then, taking the hyperrelation o-s as
an example, in the original subgraph Gt, if the object entity
o of the relation rs of the fact (s

′
, rs, o) is the subject entity

s of the relation ro of the fact (s, ro, o
′
), the hyperrelation

between the relations rs and ro is o-s in the corresponding
twin hyperrelation subgraph. We obtain the adjacency matrix
OSt of the hyperrelation o-s through ROt×RSt. By analogy,
we obtain the adjacency matrices SOt, OOt, and SSt of
the hyperrelations s-o, o-o, and s-s through RSt × ROt,
ROt×ROt, and RSt×RSt, respectively. Specifically, we set
the diagonal elements of OOt and SSt to zero to prevent the
repeated generation of self-loop relation nodes. Finally, we
generate HGt through the hyperrelation adjacency matrices
OSt, SOt, OOt, and SSt.

Next, we aggregate the neighborhood information of the
relations in each temporal hyperrelation subgraph via the
relation-aggregating R-GCN. We aggregate the adjacent in-
formation of every node (i.e., relation) in the graph via the
message-passing operation:

r(l)ro =

f

 ∑
hr∈HR

1

cro,hr

∑
rs∈Rhr

ro

W
(l−1)
hr (r(l−1)

rs + hr(l−1)) +W
(l−1)
0 r(l−1)

ro


(1)

where r(l−1)
ro , r(l)ro ∈ RM×d represent all the relation embed-

dings within the (l − 1)th and lth layers of the relation-
aggregating R-GCN, respectively. Rhr

ro represents the set of
relations that are immediately next to node ro via the hyperre-
lation hr. r(l−1)

rs and hr(l−1) demonstrate the adjacent relation

Algorithm 1 Hyperrelation subgraph construction algorithm
Input: A subgraph Gt with quadruples (s, r, o, t)
Output: A twin hyperrelation subgraph HGt with quadruples
(rs, hyper-r, ro, t)

1: for each quadruple in Gt do
2: Determine the relation-object adjacency matrix ROt

and relation-subject adjacency matrix RSt.
3: end for
4: if (s

′
, rs, o, t) ∩ (s, ro, o

′
, t) ∩ o = s then

5: Obtain the adjacency matrix OSt of the hyperrelation
o-s through ROt ×RSt.

6: end if
7: if (s, rs, o

′
, t) ∩ (s

′
, ro, o, t) ∩ s = o then

8: Obtain the adjacency matrix SOt of the hyperrelation
s-o through RSt ×ROt.

9: end if
10: if (s, rs, o, t) ∩ (s

′
, ro, o

′
, t) ∩ o = o

′
then

11: Obtain the adjacency matrix OOt of the hyperrelation
o-o through ROt×ROt and set the diagonal elements
of OOt to zero.

12: end if
13: if (s, rs, o, t) ∩ (s

′
, ro, o

′
, t) ∩ s = s

′
then

14: Obtain the adjacency matrix SSt of the hyperrelation
s-s through RSt ×RSt and set the diagonal elements
of SSt to zero.

15: end if
16: Generate HGt through the hyperrelation adjacency matri-

ces OSt, SOt, OOt, and SSt.
17: return HGt

embeddings and the corresponding hyperrelation embeddings
within the (l − 1)th layer of the relation-aggregating R-
GCN. cro,hr represents the size of Rhr

ro . f(·) represents the
adopted RReLU activation function. W

(l−1)
hr represents the

edge-specific parameters to aggregate the structural features
depending on various hyperrelations. W

(l−1)
0 represents the

parameters to aggregate the self-loop information for all the
relations. Then, the output of the relation-aggregating R-GCN
in the twin hyperrelation subgraph HGt is the neighborhood-
aggregated relation embeddings Rt

Agg at timestamp t. Gener-
ally, as Figure 2(a) shows, the relation-aggregating R-GCN
in a certain hyperrelation subgraph HGt at the tth historical
timestamp can be formally represented as:

Rt
Agg = RAR_GCN(Rt

Lstm,HRt) (2)

where Rt
Agg ∈ R2M×d is the output of the relation-aggregating

R-GCN at the tth historical timestamp.
As shown in Figure 2(a), Rt

Lstm ∈ R2M×d and HRt ∈
R2H×d are the output relation embeddings and hyperrelation
embeddings of the LSTM and the hyper LSTM in the TIM
at the tth timestamp, respectively, and they both contain
structural information from the previous (t− 1)th timestamp.
Thus, we use the R-GRU to model the chronological dependen-
cies between the relation embeddings in sequential subgraphs.



Specifically, we normalize the aggregation operation of the
relation-aggregating R-GCN by passing the input and output
relation embeddings into a GRU cell to accommodate complex
modeling:

Rt = R_GRU(Rt
Agg,Rt

Lstm) (3)

where Rt
Lstm ∈ R2M×d is the output of the LSTM in the

TIM at the tth historical timestamp; however, it contains
hidden relation and entity information from the (t − 1)th

timestamp, as mentioned above. Rt ∈ R2M×d is the final
relation embeddings of the tth historical subgraph.

D. Entity Aggregation Module (EAM)

This module is designed to aggregate the neighboring entity
and relation information of the entities in each historical
subgraph of the TKGs.

As Figure 2(c) shows, we aggregate the neighborhood
information of the entities of each historical subgraph through
the entity-aggregating R-GCN. Similar to the RAM processing
strategy, we adopt message-passing architecture here:

e(l)o =

f

∑
r∈R

1

co,r

∑
s∈Er

o

W(l−1)
r (e(l−1)

s + r(l−1)) +W
(l−1)
0 e(l−1)

o


(4)

where e(l−1)
o , e(l)o ∈ RN×d indicate all the entity embeddings

within the (l − 1)th and lth layers of the entity-aggregating
R-GCN, respectively. Er

o represents the entity set which is
next to the node o and connected by relation r. e(l−1)

s and
r(l−1) represent the neighborhood entity embeddings and the
corresponding relation embeddings within the (l − 1)th layer
of the entity-aggregating R-GCN. co,r demonstrates the size
of Er

o . Moreover, f(·) indicates the used activation function
(RReLU ). W(l−1)

r indicates the edge-specific parameters used
to aggregate the structural information depending on various
relations. W

(l−1)
0 represents the parameters used to aggre-

gate the entities self-loop information. Finally, the entity-
aggregating R-GCN of the tth historical subgraph can be
formally represented as:

Et
Agg = EAR_GCN(Et−1,Rt) (5)

where Et
Agg ∈ RN×d is the entity-aggregating R-GCN output

of the tth temporal subgraph. Et−1 ∈ RN×d is the R-GRU
output of the (t − 1)th subgraph. Rt ∈ RN×d is the relation
representations obtained from the RAM at the tth timestamp.
Next, similar to the RAM, we again use an R-GRU to model
the evolution of the entity embeddings over time in different
historical subgraphs within the EAM. As shown in Figure 2(c),
we pass the R-GRU output of the previous historical subgraph
and the entity-aggregating R-GCN output of the next historical
subgraph to the current R-GRU:

Et = R_GRU(Et
Agg,Et−1) (6)

where Et ∈ RN×d is the final entity embeddings of the original
subgraph Gt at the tth historical timestamp.

E. Twin-Interact Module (TIM)

As shown in the leftmost part of Figure 2, we generate
hyperrelation subgraphs according to the relative positional
associations between the relations and entities in the original
subgraphs. Following MaKEr [30], we use four hyperrela-
tions {o-s,s-o,o-o,s-s} to model the positional association
constraints between the entities and relations.

In TKGs, when the interactions between relations and enti-
ties are modeled, the sequential evolution between historical
subgraphs must be considered. As shown in Figure 2(b), the
TIM actually builds evolutionary communication channels be-
tween the RAM and the EAM. In particular, the entity embed-
dings from the EAM of the (t− 1)th timestamp participate in
the mean pooling operation to update the relation embeddings;
then, following previous work [8], [12], we preserve the distant
features by concatenating the relation embeddings of the first
historical timestamp:

Rt
Mean = [R0;MP(Et−1,Et

r)] (7)

where Rt
Mean ∈ R2M×2d, R0 ∈ R2M×d, and Et−1 ∈ RN×d.

MP indicates the mean pooling operation. Et
r indicates the

entities immediately connected to specific relations {r} regard-
less of the in-degree or out-degree edges that are present at
the tth timestamp. This step models the general association
constraints between the relations and entities. Then, we utilize
LSTM to model the evolution of these interactions over time:

Rt
Lstm,Ct = LSTM(Rt

Mean, (Rt−1,Ct−1)) (8)

where Rt
Lstm ∈ R2M×d is regarded as the relation embedding

input to the relation-aggregating R-GCN of the tth subgraph.
Rt−1 ∈ R2M×d is the relation embedding output of the RAM
for the previous timestamp. Ct ∈ R2M×2d and Ct−1 ∈
R2M×2d are the temporary iterative vectors of the LSTM
sequence modeling process, and we set C0 = R0

Mean at the first
historical timestamp. Then, we further update the hyperrelation
embeddings at the tth historical timestamp according to the
updated relation embeddings Rt

Lstm performing hyper mean
pooling in the hyperrelation subgraphs:

HRt
Mean = [HR0; HMP(Rt

Lstm,Rt
hr)] (9)

where HRt
Mean ∈ R2H×2d. HR0 ∈ R2H×d denotes the

initialization embeddings of the hyperrelations. HMP indicates
the hyper mean pooling operation. Rt

hr indicates the relations
immediately connected to specific hyperrelations {hr} regard-
less of the in-degree or out-degree edges that are present at the
tth timestamp. Thus, we embed the related relation and entity
features into the hyperrelations that express the positional as-
sociation constraints. Next, we model the evolutionary patterns
of the positional association constraints over time between
the original subgraph sequence and the hyperrelation subgraph
sequence via hyper LSTM:

HRt,HCt = H_LSTM(HRt
Mean, (HRt−1,HCt−1)) (10)

where HRt ∈ R2H×d and HRt−1 ∈ R2H×d are the hyperrela-
tion embeddings at the tth and (t−1)th historical timestamps,



respectively. HCt ∈ R2H×2d and HCt−1 ∈ R2H×2d are
the temporary iterative vectors of the hyper LSTM sequence
modeling process, and we initialize HC0 = HR0

Mean at the
first historical timestamp.

In general, at a particular historical timestamp t, as shown in
Figure 2(b), the TIM generates relation embeddings Rt

Lstm and
hyperrelation embeddings HRt that both contain the positional
association constraints between the relations and entities at
the tth timestamp according to the output entity embeddings
Et−1 obtained from the EAM of the (t−1)th subgraph. Next,
the RAM generates relation embeddings Rt that aggregate the
complete adjacent information at the tth timestamp according
to the obtained Rt

Lstm and HRt. Finally, the EAM obtains the
updated entity embeddings Et at the tth timestamp according
to the relation embeddings Rt from the RAM and the entity
embeddings Et−1 of the (t− 1)th previous timestamp.

F. Time-Variability Training Strategy

The time-variability problem arises because different histor-
ical timestamps play different roles in future event forecasting
(i.e., TKG extrapolation). To overcome the time-variability
challenge, following CEN [7], we comprehensively consider
the entity and relation representations over different historical
timestamps.

For the entity forecasting task (s, r, ?, t + 1) and the re-
lation forecasting task (s, ?, o, t + 1) in the (t + 1)th fu-
ture subgraph, we can get the entity embedding sequence
{Et−k+1, · · · ,Et−1,Et} and the relation embedding sequence
{Rt−k+1, · · · ,Rt−1,Rt} for all the subgraphs in the time-
variability k-length history. We adopt Conv-TransE [20] as
a component unit of the time-variability E-decoder and the
time-variability R-decoder. Specifically, the entity and relation
decoding processes based on the embeddings {Et,Rt} at a
specific historical timestamp t can be represented as:

pe
t(o|s, r,Et,Rt) = f(Conv_TransE(st, rt) · Et) (11)

pr
t(r|s, o,Et,Rt) = f(Conv_TransE(st, ot) · Rt) (12)

where st ∈ Rd, ot ∈ Rd, and rt ∈ Rd are the embedding
representations of the entities s, o, and the relation r of a
certain query at the tth historical timestamp. f(·) denotes
the softmax function. pe

t (i.e., pe
t(o|s, r,Et,Rt)) and pr

t (i.e.,
pr
t(r|s, o,Et,Rt)) are an N-dimensional vector and an M-

dimensional vector, respectively; the dimensionality of each
denotes the probabilistic score of forecasting the specific
relation or entity to be a missing relation or entity.

We train the model with each timestamp as a batch. For
an event extrapolated to a certain future timestamp (t + 1),
the training process is regarded as an N -label and an M -
label classification problem as to the relation forecasting task
and entity forecasting task, respectively. We utilize the cross-
entropy loss function; thus, the loss functions for these two
tasks can be expressed as:

Lt+1
e = −

∑
(s,r,o)∈Vt+1

∑
i∈E

ot+1
i ln (pe

t−k+1 + · · ·+ pe
t−1 + pe

t)

(13)

Lt+1
r = −

∑
(s,r,o)∈Vt+1

∑
j∈R

rt+1
j ln (pr

t−k+1 + · · ·+ pr
t−1 + pr

t)

(14)
where Vt+1 represents all the facts in the (t + 1)th future
temporal subgraph. rt+1

j and ot+1
i denote the jth ground-truth

relation and the ith ground-truth object entity, respectively, in
Gt+1 (i.e. the (t+1)th subgraph). Note that the time-variability
strategy requires us to consider the newly emerging historical
facts in the (t+ 1)th subgraph when training facts in the (t+
2)th future subgraph to address the time-variability problem.

To train these two temporal tasks simultaneously, we set the
learning weights for the two losses. Therefore, for the training
process in the (t+1)th future subgraph, the final loss would be
represented as Lt+1 = λLt+1

e +(1−λ)Lt+1
r . λ is the learning

weight of entity forecasting.

G. Computational Complexity Analysis

In this section, the computational complexity of our pro-
posed RETIA model is analyzed. The time complexity of gen-
erating the hyperrelation subgraphs is O(V ), in which V is the
maximum number of facts contained at a separated historical
timestamp. For the RAM and the EAM, the time complexities
of relation aggregation and entity aggregation are O(kM) and
O(kN), respectively. For the TIM, the computational complex-
ities of mean pooling and LSTM are O(kMP ) and O(kd2),
respectively, where P is the maximum number of entities adja-
cent to a relation at a specific historical timestamp. Similarly,
the computational complexities of hyper mean pooling and
the hyper LSTM are O(kHP

′
) and O(kd2), in which P

′
is

the maximum number of relations related to a hyperrelation
in the corresponding hyperrelation subgraph. Finally, the time
complexity of RETIA is O(k(M+N+MP+HP

′
+d2)+V ).

IV. EXPERIMENTS

A. Experimental Setup

1) Datasets: We adopt five public TKG datasets to demon-
strate the effectiveness of our proposed model. They are
YAGO [31], WIKI [32], ICEWS14 [25], ICEWS05-15 [25],
and ICEWS18 [3]. The ICEWS series, which includes the
ICEWS14, ICEWS05-15, and ICEWS18 datasets, is from the
Integrated Crisis Early Warning System [33]. The YAGO
and WIKI datasets are supplemented with time information
based on the traditional static KGs YAGO3 and Wikipedia.
Following extensive previous work [3], [7], [8], [12], the
training set accounts for 80% of the original datasets and the
validation and test sets both account for 10% of the remainder
data. Table V details the statistics about the adopted datasets.

2) Baseline Methods: The RETIA model is compared to
multiple modeling methods including static and dynamic (in-
cluding interpolation and extrapolation). Note that the static
methods are trained without the time dimension and the
interpolation methods are trained with both historical and
future data; thus, they are not good at future event forecasting
when provided with only historical information. Among the
static methods are ConvE [19], DistMult [17], RotatE [21],
R-GCN [9], ComplEx [18], and Conv-TransE [20]. Some



modeling methods that operate under the interpolation setting
include TA-DistMult [25], HyTE [24], and TTransE [23]. We
focus on comparisons with the modeling methods under the
extrapolation setting, as these approaches are designed to
address the task of forecasting future events (i.e., TKG ex-
trapolation). These methods include CyGNet [4], RE-NET [3],
CluSTeR [26], xERTE [5], TITer [6], RE-GCN [8], CEN [7],
TLogic [27], and TiRGN [12]. Detailed descriptions of the
abovementioned modeling methods are presented in Section II.

3) Evaluation Protocol: We measure the performance of
our proposed RETIA model through a link prediction task.
Four evaluation metrics are widely adopted for such tasks.
They are hits at 1 (Hits@1), hits at 3 (Hits@3), hits at 10
(Hits@10), and mean reciprocal rank (MRR), which all reflect
the rankings of ground-truth missing entities or relations in
the obtained extrapolation results. Following RE-GCN [8],
for entity extrapolation, we calculate the mean results of the
object forecasting and subject forecasting tasks; as for relation
extrapolation, we report only the results of the MRR metric
due to the small number of relations; and for the WIKI and
YAGO datasets, we report only the results of the Hits@3,
Hits@10, and MRR metrics.

Many previous studies [5]–[8], [12], [26], [27], [34] have
proven that the traditional static evaluation metrics under the
filtered setting are not suitable for scenarios with temporal
dynamics; thus, some such works have adopted the dynamic
time-aware filtered setting. However, regardless of whether a
static filtered setting or a time-aware filtered setting is used,
the approaches for handling one-to-many or many-to-many
fact forecasting are crude. Taking an object forecasting task
(s, r, ?, t + 1) with the ground-truth entity o4 as an example,
when there are multiple valid facts with the same subject s
and relation r at the future timestamp t+ 1, then the objects
{o0, o1, o2, · · · } of these facts are conflicting entities for o4.
The time-aware filtered configuration simply kicks out all the
repetitive candidates except for the ground-truth missing entity
o4 of the specific task and thus tends to obtain better results.
Without loss of generality, we conduct our evaluation adopting
the raw configuration instead.

4) Implementation Details: The RETIA model was imple-
mented using PyTorch. Then, a Tesla V100 GPU was used
to train the model. Considering time variability, we conducted
model learning through two processes: general training and
online continuous training. During the general training process,
we utilized the training set and configured the parameters
according to the model performance achieved on the entire val-
idation set. During online continuous training, we utilized the
facts acquired at the newly emerging historical timestamps and
updated the obtained parameters according to the model per-
formance achieved for the next (i.e., future) validation or test
timestamp. The training batch size was set as the size of each
timestamp to adapt to the abovementioned training process. We
chose the historical length k from {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
according to the validation performance in general training.
Finally, we set k to 4 for the ICEWS18 dataset, 3 for the
YAGO and WIKI datasets, and 9 for the ICEWS14 and

ICEWS05-15 datasets. As for the relation-aggregating R-GCN
and the entity-aggregating R-GCN, the number of layers was
set to 2 and the dropout rate of each layer was set to 0.2.
For each Conv-TransE unit in the time-variability E-decoder
and R-decoder, we set the kernel size to 3 × 2, the dropout
rate to 0.2, and the number of kernels to 50. We set the
learning weight of the entity forecasting task λ to 0.7 for
all the datasets. Following RE-GCN [8] and TiRGN [12],
we also added static graph constraints when dealing with the
ICEWS05-15, ICEWS18, and ICEWS14 datasets. We used the
Adam optimizer to learn parameters, and the learning rates
for general training and online continuous training were both
set to 0.001. For the static modeling baseline methods, we
removed the time dimension from all the TKG datasets. The
embedding dimensionality d was set to 200, which was the
same experimental setting as that in RE-GCN [8]. We also
adopted some of the baseline results from [8].

For some extrapolation baseline methods, including
xERTE [5], TITer [6], TLogic [27], CEN [7], and TiRGN [12],
their open source codes and default parameters were used to
obtain results under the raw setting. For CluSTeR [26], which
does not possess open source codes, we reported the corre-
sponding results obtained in the original paper. TLogic [27]
can process only the datasets of the ICEWS series because
other datasets do not have content references for relations and
entities in the true world. We reorganized the input format
of the TLogic model for the ICEWS05-15 and ICEWS14
datasets because we kept the splitting strategy of datasets for
TLogic consistent with that for the other baseline models. As
for CEN [7], we reported the results using the online training
strategy, addressing the time-variability problem.

B. Results of TKG Extrapolation

1) Entity Forecasting: The results of the entity forecasting
task are represented in Table III and Table IV. We bold the best
results, and underline the second-best results. The proposed
RETIA model performs significantly better compared to the
static modeling models because they ignore the time dimen-
sion of the facts in the TKGs, and conflicting facts at different
historical timestamps are compressed into a static KG, which
makes it almost impossible to obtain accurate representations
of the entities and relations. The performance achieved by
the dynamic modeling methods under the interpolation setting
is generally better compared to that of the static models for
the dynamic modeling methods take time information into
consideration. Nevertheless, some of the interpolation methods,
specifically TTransE [23] and HyTE [24], perform poorly
because these two models focus on only embedding the times-
tamps into the low-dimensional space but the evolutionary
features passed between subgraphs are ignored. We focus on
comparisons with the dynamic modeling methods under the
extrapolation setting.

Regarding the extrapolation-based modeling methods, RE-
TIA outperforms the RE-NET [3] and CyGNet [4] models
because these two methods do not aggregate the neighborhood
information of entities and thus fail to model the internal



TABLE III
PERFORMANCE ACHIEVED IN TERMS OF ENTITY FORECASTING ON THE ICEWS14, ICEWS18, AND ICEWS05-15 DATASETS WITH RAW METRICS

Method ICEWS14 ICEWS05-15 ICEWS18
MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

DistMult 20.32 6.13 27.59 46.61 19.91 5.63 27.22 47.33 13.86 5.61 15.22 31.26
ConvE 30.30 21.30 34.42 47.89 31.40 21.56 35.70 50.96 22.81 13.63 25.83 41.43
ComplEx 22.61 9.88 28.93 47.57 20.26 6.66 26.43 47.31 15.45 8.04 17.19 30.73
Conv-TransE 31.50 22.46 34.98 50.03 30.28 20.79 33.80 49.95 23.22 14.26 26.13 41.34
RotatE 25.71 16.41 29.01 45.16 19.01 10.42 21.35 36.92 14.53 6.47 15.78 31.86
R-GCN 28.03 19.42 31.95 44.83 27.13 18.83 30.41 43.16 15.05 8.13 16.49 29.00

TTransE 12.86 3.14 15.72 33.65 16.53 5.51 20.77 39.26 8.44 1.85 8.95 22.38
HyTE 16.78 2.13 24.84 43.94 16.05 6.53 20.20 34.72 7.41 3.10 7.33 16.01
TA-DistMult 26.22 16.83 29.72 45.23 27.51 17.57 31.46 47.32 16.42 8.60 18.13 32.51

RE-NET 35.77 25.99 40.10 54.87 36.86 26.24 41.85 57.60 26.17 16.43 29.89 44.37
CyGNet 34.68 25.35 38.88 53.16 35.46 25.44 40.20 54.47 24.98 15.54 28.58 43.54
xERTE 32.23 24.29 36.41 48.76 38.07 28.45 43.92 57.62 27.98 19.26 32.43 46.00
CluSTeR 46.00 33.80 - 71.20 44.60 34.90 - 63.00 32.30 20.60 - 55.90
RE-GCN 41.50 30.86 46.60 62.47 46.41 35.17 52.76 67.64 30.55 20.00 34.73 51.46
TITer 40.90 31.77 45.84 57.67 46.62 36.46 52.29 65.23 28.44 20.06 32.07 44.33
TLogic 41.80 31.93 47.23 60.53 45.99 34.49 52.89 67.39 28.41 18.74 32.71 47.97
CEN 41.64 31.22 46.55 61.59 49.57 37.86 56.42 71.32 29.70 19.38 33.91 49.90
TiRGN 43.88 33.12 49.48 64.98 48.72 37.17 55.48 70.53 32.06 21.08 36.75 53.62

RETIA 45.29 34.60 50.88 66.06 52.17 40.21 59.42 73.98 34.16 22.97 39.27 55.96

TABLE IV
PERFORMANCE ACHIEVED IN TERMS OF ENTITY FORECASTING ON THE

YAGO AND WIKI DATASETS WITH RAW METRICS

Method YAGO WIKI
MRR Hits@3 Hits@10 MRR Hits@3 Hits@10

DistMult 44.05 49.70 59.94 27.96 32.45 39.51
ConvE 41.22 47.03 59.90 26.03 30.51 39.18
ComplEx 44.09 49.57 59.64 27.69 31.99 38.61
Conv-TransE 46.67 52.22 62.52 30.89 34.30 41.45
RotatE 42.08 46.77 59.39 26.08 31.63 38.51
R-GCN 20.25 24.01 37.30 13.96 15.75 22.05

TTransE 26.10 36.28 47.73 20.66 23.88 33.04
HyTE 14.42 39.73 46.98 25.40 29.16 37.54
TA-DistMult 44.98 50.64 61.11 26.44 31.36 38.97

RE-NET 46.81 52.71 61.93 30.87 33.55 41.27
CyGNet 46.72 52.48 61.52 30.77 33.83 41.19
xERTE 64.29 74.50 87.38 52.85 60.96 71.89
RE-GCN 63.07 71.17 82.07 51.53 58.29 69.53
TITer 64.97 74.80 87.44 57.36 63.80 72.52
CEN 63.39 71.68 83.16 51.98 58.96 70.61
TiRGN 64.71 74.17 87.01 53.20 60.78 72.07

RETIA 67.58 78.42 88.06 70.11 78.30 84.77

structures of the historical subgraphs. The xERTE [5], CluS-
TeR [26], and CEN [7] approaches model the temporal evo-
lution of the entity embeddings between subgraphs while ag-
gregating the adjacent information of entities, but they do not
model the relation embeddings. The reinforcement learning-
based methods, including CluSTeR [26] and TITer [6], extract
a limited number of entities from the entity set to make up the
candidate set; thus, the ranking cardinality is much lower than
that of other methods, and better results can be easily obtained.
This is why RETIA is slightly weaker than CluSTeR on the
ICEWS14 dataset. Rule-based methods, including TLogic [27],
conduct more targeted modeling. However, TLogic also ig-
nores structural aggregation information during the evolution
of historical subgraphs; therefore, RETIA performs better than
TLogic on the ICEWS series datasets, which is the dataset
that TLogic performs well on. Moreover, RETIA performs

TABLE V
DETAILS OF THE TKG DATASETS

#Datasets ICEWS14 ICEWS05-15 ICEWS18 YAGO WIKI

#Entities 6,869 10,094 23,033 10,623 12,554
#Relations 230 251 256 10 24
#Training 74,845 368,868 373,018 161,540 539,286
#Validation 8,514 46,302 45,995 19,523 67,538
#Test 7,371 46,159 49,545 20,026 63,110
#Granularity 24 hours 24 hours 24 hours 1 year 1 year

better than RE-GCN [8] and TiRGN [12] because these
methods aggregate only the adjacent entity information of
the relation embeddings, as mentioned above, which leads
to incomplete relation representations due to the "message
islands" problem and further affects the score decoding process
of entity forecasting. On the other hand, all of these extrap-
olation methods ignore the positional association constraints
between the embeddings of the relations and entities, thus
resulting in fuzzy aggregation of the structural information
in each subgraph. Therefore, our proposed RETIA model
outperforms the existing entity forecasting models on almost
all the evaluation metrics and datasets.

2) Relation Forecasting: The results of relation forecasting
are represented in Table VII. Identically, we bold the best
results, and underline the second-best results. Since little
work has been performed on relation forecasting, we compare
RETIA with only the representative models. As mentioned
above, methods that do not model relation embeddings cannot
forecast future relations. In particular, the compared static mod-
eling methods include ConvE [19] and Conv-TransE [20]. The
compared dynamic modeling methods include RGCRN [35],
RE-GCN [8], and TiRGN [12]. Among them, RE-NET [3]
extends a heterogeneous graph model (GCRN) [35] to an
RGCRN by replacing the GCN with an R-GCN.

The RETIA model performs significantly better than the
static approaches because this kind of method does not model



TABLE VI
ABLATION STUDY RESULTS OBTAINED ON ALL THE DATASETS

Module YAGO WIKI ICEWS14 ICEWS05-15 ICEWS18
Entity Relation Entity Relation Entity Relation Entity Relation Entity Relation

wo. Entity Aggregation Module (EAM) 2.34 57.34 0.61 36.21 0.13 13.72 11.31 19.94 0.08 14.66
wo. Relation Aggregation Module (RAM) 61.30 15.94 45.78 12.39 29.95 3.63 30.54 3.90 15.66 2.49

RETIA 67.58 98.91 70.11 98.21 45.29 42.05 52.17 43.19 34.16 41.78

TABLE VII
PERFORMANCE ACHIEVED IN TERMS OF RELATION FORECASTING ON ALL

THE DATASETS WITH RAW METRICS

Method YAGO WIKI ICEWS14 ICEWS05-15 ICEWS18

ConvE 91.33 78.23 38.80 37.89 37.73
Conv-TransE 90.98 86.64 38.40 38.26 38.00

RGCRN 90.18 88.88 38.04 38.37 37.14
RE-GCN 97.74 97.92 41.06 40.63 40.53
TiRGN 93.58 98.12 42.57 42.12 41.78

RETIA 98.91 98.21 42.05 43.19 41.78

time information. In the comparison with the dynamic model-
ing methods, the superior performance of RETIA on almost
all the datasets demonstrates that aggregating adjacent entity
and relation features simultaneously for relation embeddings
helps obtain accurate representations. We note that RETIA
does not work as well on the ICEWS14 dataset as it does
on TiRGN because TiRGN uses historical one-hop repetitive
relations to limit the scope of the candidate set. Specifically, it
simply kicks relations that do not exist historically out of the
candidate set, which occasionally yields better performance
on certain datasets. On the other hand, in the comparison
with the baseline models, the relation forecasting improvement
achieved by RETIA is much smaller than its entity forecasting
improvement because we model the forecasting process as
a multilabel classification task, and the relation number of
the dataset is much smaller than the entity number, making
relation forecasting significantly easier than entity forecasting.

3) Comparison on Prediction Time: We compare the run
time of RETIA with that of the important extrapolation
methods on all the datasets. Note that the time consumption
results for RE-NET were taken from [8], since we were
unable to run their open-source codes due to program crashes.
As shown in Table VIII, we underline the results for which
the time efficiency is better than that of RETIA. RETIA
spends more run time than RE-NET and CyGNet on the
ICEWS series datasets, but consumes far less time on the
YAGO and WIKI datasets. Compared to RE-GCN and CEN,
RETIA consumes more time on all the datasets due to its
higher model complexity. xERTE and TLogic are more time-
consuming because they both use sampling mechanisms to
generate a large number of query-related subgraphs. The time
consumed by TITer depends on the specific reinforcement
learning strategy. TiRGN is less time-efficient because it
takes considerable time to extract historical repetitive entities
and relations from the global historical space. In summary,
RETIA guarantees a limited increase in time efficiency while

TABLE VIII
RUN-TIME COMPARISONS OF THE EXTRAPOLATION METHODS ON ALL THE

DATASETS (D: DAYS; H: HOURS; MIN: MINUTES; S: SECONDS)

Method ICEWS14 ICEWS05-15 ICEWS18 YAGO WIKI

RE-NET 3.07 min 19.88 min 23.15 min 8.23 min 26.07 min
CyGNet 58.62 s 20.34 min 4.38 min 21.40 s 1.06 min
xERTE 14.81 min 3.67 h 2.62 h 29.22 min 2.58 h
RE-GCN 3.33 s 46.51 s 6.86 s 0.29 s 0.53 s
TITer 2.93 min 22.66 min 2.26 d 1.62 h 22.35 min
TLogic 37.91 min 20.63 h 1.37 d - -
CEN 5.42 s 1.73 min 12.08 s 1.24 s 4.38 s
TiRGN 17.36 min 9.46 h 2.11 h 18.90 min 39.23 min

RETIA 8.46 min 3.93 h 28.71 min 6.40 s 18.06 s

providing excellent extrapolation results.

C. Ablation Study

In this section, we do an ablation test to study the roles of
the RAM and the EAM in the model. The study of the TIM
is separately provided in Section IV-D.

As Table VI shows, we also bold the best results, and un-
derline the second-best results. We do an ablation study on all
the experimental datasets and report the results in terms of the
most representative MRR metric. The expressions "wo. Entity
Aggregation Module (EAM)" and "wo. Relation Aggregation
Module (RAM)" represent the removal of the EAM or RAM
from the complete RETIA model, and "RETIA" indicates the
complete proposed model. We record the entity forecasting and
relation forecasting results under the "Entity" and "Relation"
columns, respectively.

In the experiment, we randomly initialize the entities and
relations and then remove the EAM by keeping the initialized
entity embeddings unchanged and updating the relation em-
beddings normally. On the other hand, we randomly initialize
the entities, relations, and hyperrelations and then remove
the RAM by keeping the initialized relation embeddings
unchanged and iteratively updating the entity embeddings. It
is observed that the absence of the EAM or the RAM can
significantly degrade the performance of the model, proving
that accurate relation and entity representations are essential
for both relation and entity forecasting. Without the RAM,
a significant degradation can be observed in the model’s
relation forecasting results; in the absence of the EAM, a
significant decrease can be observed in the entity forecast
performance of the model. This proves that the expressions of
entity embeddings and relation embeddings play major roles in
entity and relation forecasting tasks, respectively. In particular,
the loss of entity aggregation modeling is catastrophic for the
entity forecasting task, with the MRR metric reaching only



Fig. 3. Study on the role of the TIM in the general
training process with the YAGO dataset

Fig. 4. Study on the role of the TIM in the general
training process with the ICEWS14 dataset

Fig. 5. Study on the positional association con-
straints with the YAGO dataset

TABLE IX
STUDY ON THE ROLE OF THE TIM IN THE FORECASTING PROCESS WITH

THE YAGO AND ICEWS14 TEST SETS

Module
YAGO ICEWS14

Entity Relation Entity Relation
MRR Hits@10 MRR Hits@10 MRR Hits@10 MRR Hits@10

wo. TIM 66.27 85.68 69.23 86.49 42.61 63.09 36.44 57.77
w. TIM 67.58 88.06 98.91 99.93 45.29 66.06 42.05 73.65

0.08 even on the most challenging ICEWS18 dataset (which
has the largest entity numbers). On the other hand, relation
aggregation modeling can especially affect the relation fore-
casting performance of the method and reduce the accuracy
of entity forecasting to a certain extent. When the complete
neighborhood structure information is aggregated for both the
entities and the relations, and the evolutionary association
constraints are simultaneously modeled via the TIM, RETIA
realizes a greater level of improvement.

D. On the Twin-Interact Module

In this section, we investigate the overall contribution of
the TIM to model performance and further study the role of
evolutionary modeling of the positional association constraints
on the YAGO and ICEWS14 datasets.

1) On the Association Constraints: On the one hand, we
randomly initialize the relation and entity embeddings and
send them to the EAM to iteratively update the entity embed-
dings while keeping the relation embeddings unchanged. On
the other hand, we iteratively update the relation embeddings
by sending the randomly initialized relation and hyperrelation
embeddings to the RAM while keeping the hyperrelation
embeddings unchanged. Note that the relation embeddings
in the EAM and RAM are two different and inconsistent
individuals. As Figure 3 and Figure 4 show, we report the
results of the general training process of the model conducted
with and without the TIM based on the YAGO and ICEWS14
datasets. "w. TIM" indicates the model with the TIM, and the
losses of different epochs are plotted from left to right in blue.
However, "wo. TIM" indicates that the TIM is removed from
the model, and the losses are plotted from right to left in green.
"Joint" indicates the joint losses with the task weight λ that
are actually backpropagated during training.

Within the general training process, when the model perfor-
mance at the current epoch is lower than that in the historical
best epoch for five consecutive iterations, we stop the model
training procedure. When the association constraints between
relations and entities are considered, the training process of the
model converges more easily. During the training process, on
both datasets, the losses of the modeling process including the
association constraint are reduced to a low level in a relatively
short period of time. For the YAGO dataset, the "wo. TIM" loss
eventually drops to a level similar to that of "w. TIM"; however,
for the ICEWS14 dataset, the "wo. TIM" model has difficulty
converging due to the more complex data structure and smaller
time granularity. On the other hand, as Table IX shows, we
compare the forecasting performance of the method under two
conditions on the two datasets. Note that the comparisons are
the final results obtained after conducting online continuous
training. If the association constraints between entities and
relations (wo. TIM) are not modeled, the model not only
does not converge easily in the general training process but
also performs poorly on the test set. In summary, the learned
embeddings tend to overfit the data because they ignore the
association constraints.

2) Capturing the Positional Association Constraints via
Hyperrelations: The hyperrelations are used to model the
positional association constraints between entities and rela-
tions. We further explore the ability of hyper mean pooling
and the hyper LSTM to capture the positional association
constraints by changing the hyperrelation embeddings that
the TIM delivers to the RAM. As Figure 5 shows, "wo.
HRM" indicates that the hyperrelations are not modeled, and
we take the initialized embeddings as RAM inputs instead.
"w. HMP" refers to using hyper mean pooling to aggregate
the adjacent relation information of the hyperrelations. "w.
HMP+HLSTM" indicates that the evolutionary dependencies
between the hyperrelations of the subgraphs are modeled using
the hyper LSTM based on hyper mean pooling.

For both the entity and relation forecasting tasks, the
performance achieved by inputting the initial hyperrelation
embeddings into the RAM for aggregation almost reaches
that of the hyper mean pooling operation. On the one hand,
this is because the hyperrelation generation algorithm already
includes the positional association constraints between entities



Fig. 6. Study on the role of relation modeling in
entity forecasting with the ICEWS18 dataset

Fig. 7. Study on the role of relation modeling in
relation forecasting with the ICEWS18 dataset

Fig. 8. Study on the time-variability training
strategy in entity forecasting with all the datasets

and relations, and the evolutionary modeling of relations
captures the common association constraints. On the other
hand, hyper mean pooling directly replaces the hyperrelation
representations with the mean of the immediately adjacent
relation embeddings, which affects the layer normalization pro-
cess [36] of complex networks. When using the hyper LSTM
to capture the chronological development of the positional
association constraints, the model makes further improvements
in both the entity forecasting and the relation forecasting tasks.
This proves that in the process of capturing the association con-
straints, the temporal dependencies between subgraphs stand
a more important role compared to the structural information
inside the subgraphs.

E. On Relation Embeddings

In this section, we study the capacity of the relation
representation modeling approach of our proposed RETIA
to overcome the "message islands" problem on the most
representative ICEWS18 dataset.

As Figure 6 and Figure 7 show, we compare the effects of
different degrees of relation modeling on entity and relation
forecasting tasks, respectively. "wo. RM" indicates that the
relations are not modeled, and the scores are calculated directly
by inputting the initialized embeddings into the decoder. "w.
MP" refers to utilizing mean pooling to aggregate the imme-
diately adjacent entity features for relation embeddings. "w.
MP+LSTM" refers to modeling the chronological evolution of
the relations via LSTM based on the mean pooling operation.
"w. MP+LSTM+Agg" indicates that based on the mean pool-
ing and LSTM operations, we further aggregate the adjacent
relation information for the modeled relations through the
RAM instead of stopping the message-passing process for the
relations at the level of the immediately adjacent entities. This
step is the key to overcoming the "message islands" problem.

The initial relation embeddings obtained without any mod-
eling can still achieve a certain level of entity forecasting
performance, but it is fatal to relation forecasting, as it can
make the model almost lose its forecasting ability. There is
still a performance gap between the mean pooling operation
and the simultaneous mean pooling and LSTM operations. As
mentioned above, this is because using only the mean pooling
operation can lead to an impairment in the layer normalization
process conducted for the relation embeddings, thus having a

greater impact on the relation forecasting task.The advanced
baseline methods (RE-GCN and TiRGN) model the relations
at the 3rd level (w. MP+LSTM), which leads to the "message
islands" problem. Our proposed hyperrelation subgraph aggre-
gation method can effectively further improve the achieved
entity and relation forecasting performance. Because RETIA
no longer rigidly adheres to the characteristics of the immedi-
ately adjacent entities, through message-passing architecture,
it makes each relation cross the one-hop gap and passes the
feature information out.

F. On the Time-variability Training Strategy
In this section, we investigate the influence of the time-

variability training strategy on all the datasets.
Since the CEN model, which also considers the time-

variability problem, does not model the relation representa-
tions, as shown in Figure 8, we comparatively report only the
impact of the online continuous training process on the more
representative entity forecasting task. Across all the datasets,
RETIA achieves greater improvements than the advanced
baseline method under the time-variability training strategy.
This proves that reasonably modeling relations and considering
the association constraints between entities and relations are
more conducive to solve domain obstacles such as the time-
variability problem.

V. CONCLUSION

In this paper, we propose RETIA to address the challenge
of "message islands" in relation modeling and to capture
the positional association constraints between relations and
entities. RETIA evolutionally aggregates adjacent entity and
relation features to produce relation embeddings on a twin
hyperrelation subgraph sequence, thus spanning the message-
passing gap. In addition, RETIA captures positional associ-
ation constraints by modeling the structural information and
chronological dependencies of hyperrelations. Our substantial
experiments show the great improvements achieved by RETIA
over the baseline methods.

ACKNOWLEDGMENT

This work was supported in part by National Natural
Science Foundation of China under Grants No.62072203,
No.62072257 and Australian Research Council Under Grants
DP22010371, LE220100078.



REFERENCES

[1] Salvatore Carta, Alessandro Sebastian Podda, Diego Reforgiato Re-
cupero, and Maria Madalina Stanciu. Explainable AI for financial
forecasting. In Machine Learning, Optimization, and Data Science -
7th International Conference, LOD 2021, Grasmere, UK, October 4-8,
2021, Revised Selected Papers, Part II, volume 13164 of Lecture Notes
in Computer Science, pages 51–69. Springer, 2021.

[2] Yuying Li. Corporate financial fraud identification and crisis forewarning
based on the partial least squares method. International Journal of
Engineering Intelligent Systems, 30(3):211–216, 2022.

[3] Woojeong Jin, Meng Qu, Xisen Jin, and Xiang Ren. Recurrent event
network: Autoregressive structure inferenceover temporal knowledge
graphs. In Proceedings of the 2020 Conference on Empirical Methods
in Natural Language Processing, EMNLP 2020, Online, November 16-
20, 2020, pages 6669–6683. Association for Computational Linguistics,
2020.

[4] Cunchao Zhu, Muhao Chen, Changjun Fan, Guangquan Cheng, and Yan
Zhang. Learning from history: Modeling temporal knowledge graphs
with sequential copy-generation networks. In Proceedings of the Thirty-
Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Virtual
Event, February 2-9, 2021, pages 4732–4740. AAAI Press, 2021.

[5] Zhen Han, Peng Chen, Yunpu Ma, and Volker Tresp. Explainable
subgraph reasoning for forecasting on temporal knowledge graphs. In
Proceedings of the 9th International Conference on Learning Represen-
tations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenRe-
view.net, 2021.

[6] Haohai Sun, Jialun Zhong, Yunpu Ma, Zhen Han, and Kun He. Timetrav-
eler: Reinforcement learning for temporal knowledge graph forecasting.
In Proceedings of the 2021 Conference on Empirical Methods in
Natural Language Processing, EMNLP 2021, Virtual Event / Punta
Cana, Dominican Republic, 7-11 November, 2021, pages 8306–8319.
Association for Computational Linguistics, 2021.

[7] Zixuan Li, Saiping Guan, Xiaolong Jin, Weihua Peng, Yajuan Lyu, Yong
Zhu, Long Bai, Wei Li, Jiafeng Guo, and Xueqi Cheng. Complex
evolutional pattern learning for temporal knowledge graph reasoning.
In Proceedings of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers), ACL 2022, Dublin,
Ireland, May 22-27, 2022, pages 290–296. Association for Computa-
tional Linguistics, 2022.

[8] Zixuan Li, Xiaolong Jin, Wei Li, Saiping Guan, Jiafeng Guo, Huawei
Shen, Yuanzhuo Wang, and Xueqi Cheng. Temporal knowledge graph
reasoning based on evolutional representation learning. In Proceedings
of the 44th International ACM SIGIR Conference on Research and
Development in Information Retrieval, Virtual Event, Canada, July 11-
15, 2021, pages 408–417. ACM, 2021.

[9] Michael Sejr Schlichtkrull, Thomas N. Kipf, Peter Bloem, Rianne
van den Berg, Ivan Titov, and Max Welling. Modeling relational
data with graph convolutional networks. In Proceedings of the 15th
International Conference, ESWC 2018, Heraklion, Crete, Greece, June
3-7, 2018, volume 10843 of Lecture Notes in Computer Science, pages
593–607. Springer, 2018.

[10] Shikhar Vashishth, Soumya Sanyal, Vikram Nitin, and Partha P. Talukdar.
Composition-based multi-relational graph convolutional networks. In
Proceedings of the 8th International Conference on Learning Rep-
resentations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020.
OpenReview.net, 2020.

[11] Ren Li, Yanan Cao, Qiannan Zhu, Guanqun Bi, Fang Fang, Yi Liu, and
Qian Li. How does knowledge graph embedding extrapolate to unseen
data: A semantic evidence view. In Proceedings of the Thirty-Sixth
AAAI Conference on Artificial Intelligence, AAAI 2022, Virtual Event,
February 22 - March 1, 2022, pages 5781–5791. AAAI Press, 2022.

[12] Yujia Li, Shiliang Sun, and Jing Zhao. Tirgn: Time-guided recurrent
graph network with local-global historical patterns for temporal knowl-
edge graph reasoning. In Proceedings of the Thirty-First International
Joint Conference on Artificial Intelligence, IJCAI 2022, Vienna, Austria,
23-29 July 2022, pages 2152–2158. ijcai.org, 2022.

[13] Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre, Dzmitry Bah-
danau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning
phrase representations using RNN encoder-decoder for statistical ma-
chine translation. In Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing, EMNLP 2014, October 25-29,
2014, Doha, Qatar, A meeting of SIGDAT, a Special Interest Group of
the ACL, pages 1724–1734. ACL, 2014.

[14] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory.
Neural Comput., 9(8):1735–1780, 1997.

[15] Antoine Bordes, Nicolas Usunier, Alberto García-Durán, Jason Weston,
and Oksana Yakhnenko. Translating embeddings for modeling multi-
relational data. In Proceedings of the Advances in Neural Information
Processing Systems 26: 27th Annual Conference on Neural Information
Processing Systems 2013. Proceedings of a meeting held December 5-8,
2013, Lake Tahoe, Nevada, United States, pages 2787–2795, 2013.

[16] Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen. Knowledge
graph embedding by translating on hyperplanes. In Proceedings of the
Twenty-Eighth AAAI Conference on Artificial Intelligence, July 27 -31,
2014, Québec City, Québec, Canada, pages 1112–1119. AAAI Press,
2014.

[17] Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng.
Embedding entities and relations for learning and inference in knowledge
bases. In Proceedings of the 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings, 2015.

[18] Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and
Guillaume Bouchard. Complex embeddings for simple link prediction.
In Proceedings of the 33nd International Conference on Machine
Learning, ICML 2016, New York City, NY, USA, June 19-24, 2016,
volume 48 of JMLR Workshop and Conference Proceedings, pages 2071–
2080. JMLR.org, 2016.

[19] Tim Dettmers, Pasquale Minervini, Pontus Stenetorp, and Sebastian
Riedel. Convolutional 2d knowledge graph embeddings. In Proceedings
of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-
18), New Orleans, Louisiana, USA, February 2-7, 2018, pages 1811–
1818. AAAI Press, 2018.

[20] Chao Shang, Yun Tang, Jing Huang, Jinbo Bi, Xiaodong He, and Bowen
Zhou. End-to-end structure-aware convolutional networks for knowledge
base completion. In Proceedings of the Thirty-Third AAAI Conference
on Artificial Intelligence, AAAI 2019, Honolulu, Hawaii, USA, January
27 - February 1, 2019, pages 3060–3067. AAAI Press, 2019.

[21] Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. Ro-
tate: Knowledge graph embedding by relational rotation in complex
space. In Proceedings of the 7th International Conference on Learning
Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net, 2019.

[22] Mikhail Galkin, Priyansh Trivedi, Gaurav Maheshwari, Ricardo Usbeck,
and Jens Lehmann. Message passing for hyper-relational knowledge
graphs. In Proceedings of the 2020 Conference on Empirical Methods
in Natural Language Processing, EMNLP 2020, Online, November 16-
20, 2020, pages 7346–7359. Association for Computational Linguistics,
2020.

[23] Tingsong Jiang, Tianyu Liu, Tao Ge, Lei Sha, Baobao Chang, Sujian
Li, and Zhifang Sui. Towards time-aware knowledge graph completion.
In Proceedings of the 26th International Conference on Computational
Linguistics, December 11-16, 2016, Osaka, Japan, pages 1715–1724.
ACL, 2016.

[24] Shib Sankar Dasgupta, Swayambhu Nath Ray, and Partha P. Talukdar.
Hyte: Hyperplane-based temporally aware knowledge graph embedding.
In Proceedings of the 2018 Conference on Empirical Methods in Natural
Language Processing, Brussels, Belgium, October 31 - November 4,
2018, pages 2001–2011. Association for Computational Linguistics,
2018.

[25] Alberto García-Durán, Sebastijan Dumancic, and Mathias Niepert.
Learning sequence encoders for temporal knowledge graph completion.
In Proceedings of the 2018 Conference on Empirical Methods in Natural
Language Processing, Brussels, Belgium, October 31 - November 4,
2018, pages 4816–4821. Association for Computational Linguistics,
2018.

[26] Zixuan Li, Xiaolong Jin, Saiping Guan, Wei Li, Jiafeng Guo, Yuanzhuo
Wang, and Xueqi Cheng. Search from history and reason for future: Two-
stage reasoning on temporal knowledge graphs. In Proceedings of the
59th Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language
Processing, ACL/IJCNLP 2021, (Volume 1: Long Papers), Virtual Event,
August 1-6, 2021, pages 4732–4743. Association for Computational
Linguistics, 2021.

[27] Yushan Liu, Yunpu Ma, Marcel Hildebrandt, Mitchell Joblin, and Volker
Tresp. Tlogic: Temporal logical rules for explainable link forecasting
on temporal knowledge graphs. In Proceedings of the Thirty-Sixth
AAAI Conference on Artificial Intelligence, AAAI 2022, Virtual Event,
February 22 - March 1, 2022, pages 4120–4127. AAAI Press, 2022.



[28] Kangzheng Liu, Feng Zhao, Hongxu Chen, Yicong Li, Guandong Xu,
and Hai Jin. Da-net: Distributed attention network for temporal knowl-
edge graph reasoning. In Proceedings of the 31st ACM International
Conference on Information & Knowledge Management, Atlanta, GA,
USA, October 17-21, 2022, pages 1289–1298. ACM, 2022.

[29] Kangzheng Liu, Feng Zhao, Guandong Xu, Xianzhi Wang, and Hai Jin.
Temporal knowledge graph reasoning via time-distributed representation
learning. In Proceedings of the IEEE International Conference on Data
Mining, ICDM 2022, Orlando, FL, USA, November 28 - Dec. 1, 2022,
pages 279–288. IEEE, 2022.

[30] Mingyang Chen, Wen Zhang, Zhen Yao, Xiangnan Chen, Mengxiao
Ding, Fei Huang, and Huajun Chen. Meta-learning based knowledge
extrapolation for knowledge graphs in the federated setting. In Pro-
ceedings of the Thirty-First International Joint Conference on Artificial
Intelligence, IJCAI 2022, Vienna, Austria, 23-29 July 2022, pages 1966–
1972. ijcai.org, 2022.

[31] Farzaneh Mahdisoltani, Joanna Biega, and Fabian M. Suchanek. YAGO3:
A knowledge base from multilingual wikipedias. In Proceedings of
the Seventh Biennial Conference on Innovative Data Systems Research,
CIDR 2015, Asilomar, CA, USA, January 4-7, 2015, Online Proceedings.
www.cidrdb.org, 2015.

[32] Julien Leblay and Melisachew Wudage Chekol. Deriving validity time
in knowledge graph. In Companion Proceedings of the Web Conference
2018 on The Web Conference 2018, WWW 2018, Lyon , France, April
23-27, 2018, pages 1771–1776. ACM, 2018.

[33] Elizabeth Boschee, Jennifer Lautenschlager, Sean OBrien, Steve Shell-
man, James Starz, and Michael Ward. Icews coded event data. Harvard
Dataverse, 12, 2015.

[34] Yifu Gao, Linhui Feng, Zhigang Kan, Yi Han, Linbo Qiao, and
Dongsheng Li. Modeling precursors for temporal knowledge graph
reasoning via auto-encoder structure. In Proceedings of the Thirty-First
International Joint Conference on Artificial Intelligence, IJCAI 2022,
Vienna, Austria, 23-29 July 2022, pages 2044–2051. ijcai.org, 2022.

[35] Youngjoo Seo, Michaël Defferrard, Pierre Vandergheynst, and Xavier
Bresson. Structured sequence modeling with graph convolutional recur-
rent networks. In Proceedings of the Neural Information Processing
- 25th International Conference, ICONIP 2018, Siem Reap, Cambodia,
December 13-16, 2018, Proceedings, Part I, volume 11301 of Lecture
Notes in Computer Science, pages 362–373. Springer, 2018.

[36] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer
normalization. arXiv preprint arXiv:1607.06450, 2016.


	Introduction
	Related Work
	Static Modeling
	Dynamic Modeling


	The RETIA Model
	Notations and Definitions
	Architecture Overview
	Relation Aggregation Module (RAM)
	Entity Aggregation Module (EAM)
	Twin-Interact Module (TIM)
	Time-Variability Training Strategy
	Computational Complexity Analysis

	Experiments
	Experimental Setup
	Datasets
	Baseline Methods
	Evaluation Protocol
	Implementation Details

	Results of TKG Extrapolation
	Entity Forecasting
	Relation Forecasting
	Comparison on Prediction Time

	Ablation Study
	On the Twin-Interact Module
	On the Association Constraints
	Capturing the Positional Association Constraints via Hyperrelations

	On Relation Embeddings
	On the Time-variability Training Strategy

	Conclusion
	References

