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ABSTRACT
Predicting future events in dynamic knowledge graphs has attracted
significant attention. Existing work models the historical informa-
tion in a holistic way, which achieves satisfactory performance.
However, in real-world scenarios, the influence of historical infor-
mation on future events is changing over time. Therefore, it is dif-
ficult to distinguish the historical information of different roles by
invariably embedding historical entities with simple vector stack-
ing. Furthermore, it is laborious to explicitly learn a distributed
representation of each historical repetitive fact at different times-
tamps. This poses a challenge to the widely adopted codec-based
architectures. In this paper, we propose a novel model for predict-
ing future events, namely Distributed Attention Network (DA-Net).
Rather than obtaining the fixed representations of historical events,
DA-Net attempts to learn the distributed attention of future events
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on repetitive facts at different historical timestamps inspired by hu-
man cognitive theory. In human cognitive theory, when humans
make a decision, similar historical events are replayed duringmem-
ory recall. Based on memory, the original intention is adjusted ac-
cording to their recent knowledge developments, making the ac-
tion more reasonable to the context. Experiments on four bench-
mark datasets demonstrate a substantial improvement of DA-Net
on multiple evaluation metrics.
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1 INTRODUCTION
Knowledge graphs (KGs) are generated by extracting facts and eve-
nts from occurrences in the real world. Traditional KGs represent

1289

https://doi.org/10.1145/3511808.3557280
https://doi.org/10.1145/3511808.3557280
https://doi.org/10.1145/3511808.3557280


CIKM ’22, October 17–21, 2022, Atlanta, GA, USA Kangzheng Liu et al.

information in a static graph; however, most real-world facts are
dynamic.Therefore, temporal knowledge graphs (TKGs), which rep-
resent each fact as a quadruple (subject, predicate, object, times-
tamp), have been proposed to address these limitations.TheKnowl-
edge Q&A [5, 8], recommendation system [7, 37], automatic code
generation [17, 36] and other fields have further developed by use
of TKGs.

The reasoning over TKGs is to predict events (facts) at the dif-
ferent timestamps. Previous work has attempted to learn temporal
historical information to predict future events, achieving superior
performance. For example, CyGNet [42] uses the abstractive sum-
marization copy mechanism to model the previous events, and RE-
GCN [24] uses the recurrent relation-aware graph convolutional net-
work (GCN) and static information to model the historical events.
However, in existing work, historical information has been mod-
eled holistically, ignoring the dynamic evolution of events at dif-
ferent timestamps. For example, the prediction query of a quadru-
ple is (s, p, ?, tn ), and historical repetitive facts are represented
by the set {(s, p, oj , ti )|t0 ≤ ti ≤ tn−1}, where {ti } represents the
historical timestamps before tn and {oj } represents all historical
events. Existing work has mostly aimed to learn the fixed repre-
sentations for the historical repetitive entities {oj } and neglect the
temporal evolution of events, i.e., the associated attention weight.
However, events at various timestamps contribute differently to
the reasoning, this phenomenon is also referred to as the problem
of time-variability [22]. Consider the query (The man, Dinner at, ?,
New Year’s Eve) shown in Figure 1. According to tradition, the his-
torical repetitive locations (objectives) include his home, relatives’
homes, and restaurants. The choice of historical repetitive events
(new year gatherings) is considerably influenced by event occur-
rences over time, as well as the surrounding context.

However, existing work has faced challenges when treating the
historical repetitive facts as dynamic distributions. First, existing
work has obtained definite representations of historical entities,
also known as the encoder in codec-based architectures; thus, the
distributed features of historical entities {oj } at different timestamps
are compressed into invariant vectors. Therefore, previous models
have had difficulty in capturing the historical variations of repeti-
tive events over time. Second, although historical entities {oj } at dif-
ferent timestamps play different roles in predicting future events,
it is both time and space consuming to obtain a distributed rep-
resentation at each historical timestamp. To solve these problems,
we consider cognitive science theory.

How do humansmake future decisions? According to dual-proc-
ess theory [12, 29] and studies on concentrated and distributed at-
tention [3, 30], in the first process, humans filter out appropriate
judgments in theirmemory space based on prior experience, which
is often derived from tradition and preserves distant features of
historical facts; and then in the second process, humans use recent
developments of their knowledge to adjust their judgments. For
instance, as shown in Figure 1, when a man considers where to
celebrate on New Year’s Eve, he first recalls what he usually did in
previous years. In years before the outbreak of COVID-19, he likely
visited their relatives or went to a restaurant, as informed by the
automatic thinking phrase (Process I), because it is a tradition to
have family reunions with senior family members at their homes
or at pre-booked restaurants on New Year’s Eve. However, such
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Figure 1: An illustration of dual-process reasoning

choices are sometimes impacted by unpredictable events, such as
COVID-19. In this situation, in the second decisionmaking process,
the choice of having a family reunion must be adjusted, either by
staying at home or having small group gatherings, reflecting the
newly enforced COVID restrictions (e.g., restaurant capacity) and
safety considerations. Therefore, as a result of this dual-process
mechanism, humans’ attention to historical events during differ-
ent periods changes at various timestamps. To make better deci-
sions, humans use distributed attention rather than concentrated
attention to emphasize key information in their memory at differ-
ent time periods.

In this paper, we simulate the abovementioned dual-process me-
chanism to model the distribution of historical information at dif-
ferent timestamps and propose a new method for temporal knowl-
edge graph reasoning known as DA-Net (DistributedAttentionNet-
work). To address the first challenge, we design distributed atten-
tion mechanisms to learn the variable distributions of historical
repetitive events by modeling the attention of each repetitive fact
in different subgraphs rather than by learning only their represen-
tations. To address the second challenge, we develop innovative
frameworks for learning distributed representations of historical
information while consuming limited computational resources. As
shown in Figure 2, in the first attention layer, we extract the histor-
ical repetitive facts of each event in the current subgraph, and then
uniformly learn the attention of these repetitive facts. By training
themodel in chronological order beginningwith the 1st timestamp,
we ensure that the learned attention preserves traditional histori-
cal features. In the second attention layer, we consider the influ-
ence of unexpected emergencies on the prediction. At this stage,
recent knowledge developments are critical for adjusting decisions.
In Section 4.6, we prove the important role of shallow memory,
and the changes of the rule-based statistical information in shal-
low memory adjust the decision-making process, which we refer
to as “knowledge sensitivity” and our proposed DA-Net success-
fully captures it. We extract the historical frequency information
of each fact in the current subgraph, which changes according to
the humans’ recent knowledge developments over time and dy-
namically assign attention rewards and punishments to the facts
based on changes in their historical frequency. In Section 3.5, we
demonstrate that the computational complexity of the proposed
framework is linearly related to the size of the datasets.

The main contributions of this work are as follows:
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Figure 2: The framework of our DA-Net model. The blue bars indicate the probability predicted by the global channel for a
query (s,p, ?, tn). In the historical channel, the red dotted squares in the memory space represent historical predicate-object
pairs. The green bars indicate the frequency of the historical facts. The two layers include distributed attention to learn prior
experience and to utilize recent knowledge developments, respectively

• We demonstrate the time-variability problem during TKG
reasoning at the data level for the first time, showing that
the representations of different subgraphs at various his-
torical timestamps play distinct roles in predicting future
events.

• In contrast to conventional codec-based methods, we pro-
pose a novel network for predicting future events in TKGs
that imitates human decision-making processes, modeling
dynamic distributions of historical repetitive facts via dis-
tributed attention in a dual process.

• Based on cognitive theory modeling, we propose the con-
cept of memory space and study the effect of memory space
depth on model performance, proving that DA-Net success-
fully captures shallow memory features such as knowledge
sensitivity.

• Extensive experiments on four public TKG datasets are con-
ducted. The improvement on almost all evaluation metrics
demonstrates the effectiveness of our method for predicting
future events.

The remainder of this paper is organized as follows. Related
work is introduced in Section 2, including existing static and dy-
namic reasoning methods for TKGs. The proposed model is de-
tailed in Section 3. Besides, the experiments and analyses are pre-
sented in Section 4, followed by the conclusion in the final section.

2 RELATEDWORK
Existing TKG reasoning approaches are mainly divided into two
kinds by data modeling: static inference and dynamic inference.

2.1 Static Reasoning Methods
Before temporal dynamics are investigated, much research is con-
ducted on static reasoningmethods. Embedding-basedmodels, such
as TransE [4], RotatE [32], ConvE [11], and TRE [41], map predi-
cates and entities to low-dimensional vector spaces. In addition,
matrix decomposition-basedmethods, including DistMult [40] and
TuckER [2], learn the embedding vectors of entities and predicates
by outputting a core tensor. Relation path reasoning uses path in-
formation in graph structures to model complex relation (predi-
cate) paths. Among them, the reinforcement learning-based rea-
soning methods express the process of finding paths between en-
tities as sequential decisions, especially the Markov Decision Pro-
cess (MDP), such as DeepPath [39] and MINERVA [9]. Reasoning
methods based on graph neural networks, including R-GCN [28]
and Comp-GCN [34], apply graph algorithms to knowledge graphs.
However, these methods model knowledge graphs in a static man-
ner, neglecting the dynamic evolution of the graph, which differs
from real-world situations and leads to deviations in the predic-
tions.

2.2 Dynamic Reasoning Methods
We focus on dynamic reasoning methods for TKGs.TTransE [18]
models the time-predicate sequence for inference. Deriving [20]
embeds the time and predicates into low-dimensional vector space.
HyTE [10] makes projection of predicates and entities onto the
hyperplane of particular timestamps. TeMP [38] completes TKGs
by simulating the information of the multi-hop structure and the
temporal facts of neighboring timestamps. DySAT [27] calculates
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entity representations by combining the self-attention along with
two dimensions of the neighboring structure and the temporal vari-
ations. Recent work has focused on predicting future events in
TKGs. RE-NET [19] models the occurrence of facts as a conditional
probability distribution based on the subgraphs of previous time
series. CyGNet [42] treats the historical entities that appear in pre-
vious timestamps as abstract summaries, and predicts future facts
based on them.The HIP network [16] transmits historical informa-
tion from the perspective of time, structure, and repetition to make
predictions. xERTE [14] generates query subgraphs with certain
hop numbers by constructing inference graphs. CluSTeR [23] and
TITer [31] both use reinforcement learning to determine evolution-
ary patterns in query paths. RE-GCN [24] learns the entity repre-
sentations containing evolutionary information by modeling the
sub-graph sequences of recent timestamps. TLogic [25] constrains
the query path based on temporal logic rules extracted from tem-
poral random walks. However, in the above work, the problem of
time-variability during the temporal reasoning process is ignored.
CEN [22] addresses this issue in an online learning setting; how-
ever, this method is still limited and could fine-tune only represen-
tation vectors with finite lengths.

3 METHOD
3.1 Definitions and Model Architecture
3.1.1 Notations and definitions. In a TKG, let E be the entity set,
R be the predicate set, T be the timestamp set, N be the size of E,
P be the size of R, and T be the size of T . We divide the TKG into
a series of sequential subgraphs G = {G0,G1, ...,GT−1} to simu-
late the evolution over time. G is composed of the facts containing
time information, such as (s,p,o, tn), where {s,o} ∈ E, p ∈ R, and
tn ∈ T . s, p, o, and tn are the embedding representations of s , p,
o, and tn , respectively, and d is the embedding dimension. Future
event prediction on the TKG is to predict the missing object entity,
(s,p, ?, tn), or the missing subject entity, (?,p,o, tn), according to
previous temporal subgraphs {Gt |t < tn } with historical informa-
tion, where tn is a future timestamp.

As shown in Figure 2, for a query (s,p, ?, tn) at timestamp tn , the
memory space is defined as a sequence of multi-hot vectors gener-
ated according to temporal static subgraphs, {m(s,p)

ti ∈ RN |t0 ≤
ti ≤ tn−1}. The value in the i-th dimension of m(s,p)

ti is 1 if the
fact (s,p,oi ) occurred at timestamp ti . To predict the future object
entity in (s,p, ?, tn), the historical information extracted from the
memory space is represented as:

M(s,p)
tn =m

(s,p)
t0 +m

(s,p)
t1 + ... +m

(s,p)
tn−1 (1)

whereM(s,p)
tn is an N-dimensional vector, with each dimension rep-

resenting the occurrence frequency of the corresponding historical
entity, thus imitating memory in the human brain. We assume that
for all facts in the dataset, the memory space starts with the 1st
timestamp.

3.1.2 Model architecture. Figure 2 shows an outline of our pro-
posed framework, which is composed of two channels. Specifically,
the global channel is responsible for learning the global informa-
tion according to the original query, which ensures that the event

prediction model does not rely too much on historical information
in the historical channel. The historical channel uses two attention
layers to mimic how humans dynamically utilize information in
the memory space and assign distributed attention to information
at different timestamps. In the historical channel, the historical
repetitive facts and their frequencies are firstly extracted for the
first and second attention layers, respectively. This information is
obtained frommemory space, which consists of a sequence of tem-
poral static subgraphs divided by timestamps. Then through the
self-attention mechanism [35], the first attention layer (for prior
experience) simulates the efficient manner in which humans learn
the traditional attention weights of historical facts. The second at-
tention layer (for recent knowledge development) assigns reward
or punishment scores to the historical facts (including both repet-
itive and nonrepetitive facts) according to recent changes in their
occurrence frequency.The final prediction is generated by combin-
ing the attention of these two channels.

3.2 Historical Channel
Themotivation to introduce the historical channel is to imitate hu-
man judgement processing, which includes two steps. First, peo-
ple recall similar historical facts from their memory and assign the
original attention to them according to prior experience; then, hu-
mans use recent knowledge developments to adjust and select a
proper decision. Similarly, in an event prediction task, if a person
needs to determine the answer of an unknown query (s,p, ?, tn),
he first searches his memory space for similar situations, that is, for
historical repetitive facts, denoted by {(s,p,o0, t0),…,(s,p,oi , ti ),…,
(s,p,on−1, tn−1)}, where ti ∈ [t0, tn−1]. After collecting historical
repetitive facts, he will decide which historical repetitive fact is the
most valuable for predicting future events. In the historical chan-
nel, we use two attention layers to simulate this process.The details
are presented below.

3.2.1 First attention layer. We further represent historical repeti-
tive facts as {(s,p,o0), ..., (s,p,oi ), ..., (s,p,on−1)}, where {(p,oi )|i
∈ [0,n − 1]} is the set of historical predicate-object pairs. In prac-
tice, we calculate a batch of queries, and generate the matrix Q by
concatenating s and p:

Q = Wq [s,p] (2)

where Wq ∈ Rdq×2d , and dq is the embedding dimension of the
matrix Q . Furthermore, [s,p] ∈ R2d×1×B , where B is the number
of queries in a batch. To the best of our knowledge, we are the first
to model the historical repetitive facts of each query as a sequence.
However, we encounter the issue of inconsistent sequence length
in sequence batches. We solve this problem by using the padding
mask [35]. Then we generate matrices K and V by concatenating
p and oi:

K = Wk [p, oi],V = Wv [p, oi] (3)

where, Wk ∈ Rdk×2d and Wv ∈ Rdv×2d . In our model, we set
dq = dk = dv = 64. Furthermore, [p, oi] ∈ R2d×S×B , where B is
the size of a batch, S is the number of historical repetitive facts in
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each sequence. We define the self-attention as:

Self_Attention(Q,K ,V ) =

softmax
(
Wq [s,p](Wk [p, oi])T√

dk

)
Wv [p, oi] (4)

where 1√
dk

is the scaling factor, which deals with the effect when
the softmax function reaches an area of a minimal gradient. Wq ,
Wk , and Wv are trainable parameters. To predict future events,
matrices Wk and Wv assign unique coefficients to each histori-
cal repetitive fact. Thus, our model can assign different attention
weights to various historical repetitive facts by learning separately.
The introduction of multi-head attention allows the prediction to
consider the importance of historical repetitive facts frommultiple
perspectives (subspaces).The heads denote the number of matrices
Wq , Wk , and Wv , and we use 8 heads in our model. Then we in-
troduce a feed-forward network (FFN) with df f =2048 hidden units:

FFN (x) = W1(RELU (W2x)) (5)

where x ∈ R2d×B is the output of the multi-head attention oper-
ation, and W2 ∈ Rdf f ×2d , W1 ∈ R2d×df f . After the layer of the
FFN, we introduce residual connections [15] and layer normaliza-
tion [1].The output of the first attention layer is y, with y ∈ R2d×B .

3.2.2 Second attention layer. The output y includes the attention
information of historical repetitive facts in query (s,p, ?, tn). The
timestamp of a future event is necessary for predicting future events;
thus, we concatenate y and tn and convert the result to an N-
dimensional multi-hot vector through a linear layer:

st = tanh(Wt [y, tn] + bt ) (6)

where Wt ∈ RN×3d , bt ∈ RN×1, and the tanh layer allows st
range between (−1, 1) (with a gap of 2). As shown in Figure 2,
the attention punishment layer changes the index values of facts
that have not occurred in history (corresponding to the dimensions
with a value of zero inM(s,p)

tn ) to more negative numbers, denoted

as
pu
M

(s,p)

tn . The attention reward layer presents the corresponding

facts with rewards (denoted as
re
M

(s,p)
tn ) based on the base value δ ac-

cording to the frequency of the historical repetitive facts (denoted

as
+
M

(s,p)

tn , corresponding to the values of nonzero dimensions in
M(s,p)

tn ):

re
M

(s,p)
tn = so f tmax(

+
M

(s,p)

tn ) ∗ δ (7)

sh = so f tmax(st+
pu
M

(s,p)

tn +
r e
M

(s,p)
tn ) (8)

where the base value δ is chosen as the gap (i.e., 2) to ensure that
both attention layers work. From the perspective of cognition, hu-
mans can either selectively use theirmemorized knowledge through
experiential learning or adjust their learned preferences according
to recent knowledge developments. This dual process is both ob-
jective and effective, achieving distributed attention to repetitive
facts at different historical timestamps.

3.3 Global Channel
For the query (s,p, ?, tn), the global channel captures the original
query information and generates a prediction of the object entity
from a global perspective.The prediction of the global channel pre-
vents one-sided judgements or over-reliance on historical informa-
tion.The global channel first concatenates s, p, and tn in the query
and then converts the vector to size N (the size of entity set E). Fi-
nally, we normalize the output multi-hot vector with a softmax
function to obtain the result of the global channel:

sд = so f tmax(Wд [s,p, tn] + bд) (9)

where Wд ∈ RN×3d and bд ∈ RN×1. The global channel outputs
the entity corresponding to the maximum value in sд .

3.4 Training Strategy
The final prediction of query (s,p, ?, tn) is obtained by combining
the attention of the two channels:

p(o |s,p, tn) =
Attention_Addition(s,p, tn) = α ∗ sh + (1 − α) ∗ sд (10)

o = arдmaxo∈E(p(o |s,p, tn)) (11)
where 0 ≤ α ≤ 1, andAttention_Addition(s,p, tn) is anN-dimensional
multi-hot vector, with each dimension indicating the probability of
predicting the corresponding entity as the object.

To predict future events, our model first examines the histori-
cal repetitive facts in memory space, which increase with increas-
ing time, and are passed to the validation and test sets. Then the
global information and historical information are learned through
the global and historical channels, respectively. We divide the data
into batches according to timestamps to extract historical infor-
mation from memory space. We treat the prediction process as a
multiclass classification task with a classifier number N and use
the cross-entropy loss function for training:

L = −
∑
t ∈T

∑
i ∈E

∑
j ∈E

oti lnp
(
y
j
i | s,p, tn

)
(12)

where oti represents the i-th ground-truth object entity in the t-
th timestamp subgraphGt . p

(
y
j
i | s,p, tn

)
denotes the probability

that oti is the j-th object entity in the entity set E.

3.5 Computational Complexity Analysis
The main calculation cost of our model is due to the multi-head
attention operation in the first attention layer. We prove that the
computational complexity of DA-Net is linearly related to the size
of datasets by analyzing all the components of the model.

For each query (s,p, ?, tn), there are h heads in multi-head at-
tention. In our model, dq=dk=dv= 2d

kh , where k is used to explain
the case where the dimension of the embedding vector is not an
integer multiple of h, and k and h are constants. We represent the
size of the entity set E as N and the maximum sequence length
of the historical repetitive facts as n. For a dataset with D samples,
similar to previous history-based models [19, 42], we adopt the
idea of space for time and use the sparse matrix method to extract
and store the historical repetitive facts. It processes all the facts
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in the dataset through a loop traversal with a computational com-
plexity of O(D). The computational complexity of the first atten-
tion layer is O(nd2). Similarly, the computational complexities of
the second attention layer and the global channel are bothO(Nd2).
Therefore, the computational complexity of the entire training and
testing process is O((N + n)d2D). In summary, when N , n, and d
are fixed, the computational complexity of DA-Net is linearly asso-
ciated with the scale of the data.

4 EXPERIMENTS
4.1 Experimental Setup
4.1.1 Datasets. The TKG datasets for evaluation are WIKI [20],
YAGO [26], GDELT [21], and ICEWS18 [6]. YAGO and WIKI are
temporal subgraphs of YAGO3 andWikipedia, respectively. ICEW-
S18 is extracted from temporal political events. GDELT comes from
the news media on human societal scale behaviors. According to
previous work [14, 16, 19, 22, 24, 25, 31, 42], the datasets are split
into training/validation/test sets in proportions of 80%/10%/10%,
respectively. Information on the datasets is detailed in Table 1.

4.1.2 Baseline methods. Our proposed DA-Net method is compar-
ed with various static and dynamic TKG reasoning methods. The
static methods include TransE [4], DistMult [40], ConvE [11], Com-
plEx [33], RotatE [32], R-GCN [28], and Comp-GCN [34]. Dynamic
methods include TTransE [18], HyTE [10], TeMP [38], TA-DistMul-
t [13], andDySAT [27]. RE-NET [19], CyGNet [42]HIP network [16],
xERTE [14], RE-GCN [24], TITer [31], TLogic [25], and CEN [22]
predict future events based on the historical information and are
similar work to ours. The baseline models are described in detail
in Section 2.

4.1.3 Evaluation metrics. We evaluate the effectiveness of our mo-
del with the link prediction task. For each query in the test set, we
report the mean results of the two queries, (s,p, ?, tn) and (?,p,o,
tn). We use conventional evaluation metrics, including the mean
reciprocal rank (MRR), hits at 1 (Hits@1), hits at 3 (Hits@3), and
hits at 10 (Hits@10), which all report the ranking of the missing
ground-truth entity in the predicted results.

4.1.4 Implementation details. We implement our DA-Net model
in PyTorch and train the model on a GPU Tesla V100. We con-
figure the model based on the MRR performance of the method
on the validation set. In addition to the parameters given when
introducing the model in Section 3, the α parameter for the atten-
tion addition is set to 0.5 for the YAGO and WIKI datasets, 0.8 for
the ICEWS18 dataset, and 0.7 for the GDELT dataset. We use an
AMSGrad optimizer to minimize the global loss with a 0.001 learn-
ing rate. The batch size is set to 1024 for all training datasets. The
batch size of the testing datasets is set to 64 for YAGO and WIKI,
1024 for ICEWS18, and 512 for GDELT. We set the n_layers of the
multi-head attention operation to 1, and the training epoch is lim-
ited to 30 for YAGO and WIKI, 6 for ICEWS18 and 2 for GDELT,
which is sufficient for the task. For the static reasoning methods,
the timestamp information is removed from all TKG datasets. For
R-GCN [28] and Comp-GCN [34], we use DistMult [40] as the de-
coder. We set the dimension of the embedding vectors to 200 to be

consistent with the experimental settings in the HIP network [16].
Some of the baseline results are adopted from [16].

For the similar baselinework xERTE [14], RE-GCN [24], TITer [31],
TLogic [25], and CEN [22], we replicated the results on Tesla V100
using the default parameters in their open source codes and the
same evaluation metrics as our model to ensure the consistency
of the experimental settings. For CEN [22], we report its results
under the online setting, which achieves the best results of it. For
TITer [31] and xERTE [14], when we try to run on GDETT, the
largest TKG dataset, their codes crash. TLogic [25], on the other
hand, is only suitable for dealing with the ICEWS18 dataset, which
provides the content references for entities, predicates, and times-
tamps. Therefore, we report only the results of the datasets that
they are capable of processing, which is also consistent with the
experiments reported in their papers.

4.2 On the Problem of Time-variability
In this section, we use the WIKI and YAGO datasets to study the
time-variability problem in TKG reasoning. We show that differ-
ent historical timestamps play various roles in predicting future
events, which suggests that, under reasonable circumstances, fu-
ture events should pay different attention to repetitive information
at different historical timestamps.

For a query (s,p, ?, tn)with amissing object entityo, the ground-
truth attention on historical repetitive facts can be represented by
the set {(s,p,o, ti )|ti ∈ [t0, tn−1]}. We use different timestamps as
research objects and design ametric e ji for representing the ground-
truth attention of a certain timestamp on its historical timestamps:

e
j
i =

h
j
i

pj
(13)

where hji represents the ground-truth attention of all facts at the
j-th prediction timestamp on the i-th historical timestamp, and pj
represents the total number of facts at the j-th prediction times-
tamp. Therefore, e ji indicates the overall attention of all facts at
a given prediction timestamp on their historical timestamps. As
observed in Figure 3, the vertical axis represents the prediction
timestamps and the horizontal axis represents the historical times-
tamps, where each value represents the index of one year in the
WIKI dataset. For each prediction timestamp in the test set, we de-
termine the ground-truth attention on all its historical timestamps
starting with the 217th timestamp. Finally, the attention of the 10
prediction timestamps (between 222 and 231) on their historical
timestamps is represented as a heat map based on the calculation
results of Eq. 13. It can be observed that the attention of the facts
at the prediction timestamps on the historical information dynam-
ically evolves over time.

The intuitive consequence of the time-variability problem is that
the prediction timestamp cannot capture and utilize new histori-
cal information in time, e.g., the prediction timestamp’s previous
timestamp. Each prediction timestamp in the YAGO dataset (ex-
cept the 188th timestamp, which is removed because it contains
only one fact) is used as a separate study object. For cases both
with and without the previous timestamp, we test the individual
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Figure 3: Study on time-variability on
WIKI dataset

Figure 4: The influence of time-
variability on future event prediction
with YAGO dataset

Figure 5: The historical stability of
timestamp partition with YAGO and
WIKI datasets

Table 1: Details of the TKG datasets

#Datasets #Entities #Predicates #Training #Validation #Test #Granularity
YAGO 10,623 10 161,540 19,523 20,026 1 year
WIKI 12,554 24 539,286 67,538 63,110 1 year
ICEWS18 23,033 256 373,018 45,995 49,545 24 hours
GDELT 7,691 240 1,734,399 238,765 305,241 15 mins

performance of each prediction timestamp. Due to space, we re-
port only the most representative MRR metric. As shown in Fig-
ure 4, when DA-Net ignores the time-variability problem and does
not pay attention to the new historical timestamp of each predic-
tion timestamp (corresponding to the dark blue area in Figure 4),
the performance is considerably lower than the performance of the
complete DA-Net model (corresponding to the light blue area in
Figure 4). However, as shown in Figure 3, in addition to the above-
mentioned problem, the time-variability problem also includes the
different roles of various historical timestamps on future event pre-
diction, which is ignored by CEN [22]. Therefore, to address the
time-variability problem, DA-Net adopts distributed attention in-
stead of the traditional codec-based framework to model the distri-
bution of historical information.

4.3 On the Stability of Timestamp Partition
In this section, we use YAGO and WIKI datasets to demonstrate
the historical stability of the timestamp partition. As shown in Fig-
ure 5, we count the percentage of query facts that could be an-
swered from history in each prediction timestamp on both datasets.
A number k on the horizontal axis represents the kth prediction
timestamp. In the context of time-variability, with the evolution
of the prediction timestamps, new historical information is con-
stantly emerging. It could be observed that the historical repetitive
information in the prediction timestamps tends to increase over
time and always remains at a high level. This proves that there is
enough useful historical information for future event prediction.
Moreover, the time-variability contributes to the stability of the
timestamp partition.

4.4 Results of Reasoning on TKGs
We compare the DA-Net model with static and dynamic inference
methods based on link prediction tasks on TKGs. As shown in Ta-
ble 2, in the TKG reasoning task, dynamic methods generally per-
form better than static methods, with the exception of HyTE [10]
and TTransE [18]. We believe that this result occurs because these
models focus on the embedding representation of temporal infor-
mation while ignoring the temporal evolution. In terms of the sim-
ilar work, such as RE-NET [19], CyGNet [42], HIP network [16],
xERTE [14], RE-GCN [24], TLogic [25], and CEN [22], our pro-
posedDA-Netmodel has a considerable improvement over all base-
lines on all evaluation TKGdatasets and all evaluationmetrics.This
is because all of these models, with the exception of CEN [22], ig-
nore the problem of time-variability in TKG reasoning.

However, although CEN [22] proposes an online learning strat-
egy to address the challenge of time-variability, it is still limited
by its codec-based framework and must constantly fine-tune rep-
resentation vectors with finite lengths, which compresses the dis-
tributed information of each historical timestamp into a finite vec-
tor and inevitably results in representation limitations and the loss
of distributed information. It is observed that the performance of
our proposed DA-Netmodel on the YAGO dataset is inferior to that
of TITer [31] under the evaluation metric Hits@1. As mentioned
in CEN [22], TITer [31] retrieves answers through an explicit path,
which usually results in a high Hits@1 metric. We also observe
that for large datasets, such as GDELT and ICEWS18, the perfor-
mance of some recently proposed models [14, 22, 24, 25, 31] is far
inferior to that of DA-Net, CyGNet [42], and HIP network [16], be-
cause DA-Net, similar to CyGNet [42] and HIP network [16], uti-
lizes the frequency statistics of the repetitive facts. In the second
attention layer, DA-Net not only uses these frequency statistics but
alsomodels and captures the changes in these statistics that impact
the prediction of future events; thus, DA-Net also performs better
than CyGNet [42] and the HIP network [16]. We believe that this
is an advantage of modeling based on human cognition.

4.5 Ablation Study
Weperform an ablation study on themost representative ICEWS18
dataset because it contains the largest number of entities, which is
the most challenging for multiclass classification tasks, thus the
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Table 2: Performance (in percentage) on four datasets. The best results are bolded, and the second-best results are underlined.

WIKI YAGO GDELT ICEWS18
Method MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10
TransE 46.68 36.19 49.71 51.71 48.97 46.23 62.45 66.05 16.05 0.00 26.10 42.29 17.56 2.48 26.95 43.87
DistMult 46.12 37.24 49.81 51.38 59.47 52.97 60.91 65.26 18.71 11.59 20.05 32.55 22.16 12.13 26.00 42.18
ComplEx 47.84 38.15 50.08 51.39 61.29 54.88 62.28 66.82 22.77 15.77 24.05 36.33 30.09 21.88 34.15 45.96
ConvE 47.57 38.76 50.10 50.53 62.32 56.19 63.97 65.60 35.99 27.05 39.32 49.44 36.67 28.51 39.80 50.69
RotatE 50.67 40.88 50.71 50.88 65.09 57.13 65.67 66.16 22.33 16.68 23.89 32.29 23.10 14.33 27.61 38.72
R-GCN 37.57 28.51 39.66 41.90 41.30 32.56 44.44 52.68 23.31 17.24 24.96 34.36 23.19 16.36 25.34 36.48
Comp-GCN 37.64 28.33 39.87 42.03 41.42 32.63 44.59 52.81 23.46 16.65 25.54 34.58 23.31 16.52 25.37 36.61
TTransE 31.74 22.57 36.25 43.45 32.57 27.94 43.39 53.37 5.52 0.47 5.01 15.27 8.36 1.94 8.71 21.93
HyTE 43.02 34.29 45.12 49.49 23.16 12.85 45.74 51.94 6.37 0.00 6.72 18.63 7.31 3.10 7.50 14.95
TA-DistMult 48.09 38.71 49.51 51.70 61.72 52.98 63.32 65.19 29.35 22.11 31.56 41.39 28.53 20.30 31.57 44.96
DySAT 31.82 22.07 26.59 35.59 43.43 31.87 43.67 46.49 23.34 14.96 22.57 27.83 19.95 14.42 23.67 26.67
TeMP 49.61 46.96 50.24 51.81 62.25 55.39 64.63 66.12 37.56 29.82 40.15 48.60 40.48 33.97 42.63 52.38
RE-NET 51.97 48.01 52.07 53.91 65.16 63.29 65.63 68.08 40.12 32.43 43.40 53.80 42.93 36.19 45.47 55.80
CyGNet 52.60 50.48 53.26 55.82 66.58 64.26 67.98 70.16 51.06 44.66 54.74 61.32 47.83 42.02 50.71 57.72
HIP network 54.71 53.82 54.73 56.46 67.55 66.32 68.49 70.37 52.76 46.35 55.31 61.87 48.37 43.51 51.32 58.49
xERTE 77.47 76.01 78.79 79.54 88.75 87.88 89.30 90.38 - - - - 36.47 29.60 40.26 50.41
RE-GCN 81.07 78.84 82.36 84.95 83.27 80.20 84.94 89.00 39.72 31.93 43.14 53.46 45.67 37.62 49.19 61.18
TITer 74.89 74.05 74.71 76.57 90.48 90.25 90.46 90.81 - - - - 37.00 31.14 39.05 47.96
TLogic - - - - - - - - - - - - 37.35 29.57 40.56 53.02
CEN 83.11 81.20 84.15 86.46 85.84 83.55 87.11 90.02 43.54 36.51 46.13 56.88 45.09 37.85 47.92 59.12
DA-Net 84.13 81.66 86.46 87.37 91.59 90.07 92.94 93.43 58.47 51.89 62.32 69.82 51.92 45.55 55.70 62.62

Table 3: Ablation study on the ICEWS18 dataset

Evaluation Metrics MRR Hits@1 Hits@3 Hits@10
Global channel only 34.41 25.78 38.23 50.76
Global channel and first layer of attention 39.71 32.80 42.48 52.90
Global channel and second layer of attention 41.62 34.57 44.55 55.08
Historical channel only 47.23 44.36 49.84 51.03
DA-Net 51.92 45.55 55.70 62.62

role of each component of the model can be intuitively reflected.
The two attention layers in the historical channel are removed
from the model both separately and simultaneously. Moreover, we
evaluate the performance of the global channel. The MRR and Hit-
@1/2/3 metrics are used for evaluation. As indicated in Table 3, the
model performance decreases significantly when only the global
channel is adopted because the model considers only the global
information and ignores the historical information. In the second
row of Table 3, we use the global channel and the first attention
layer for the prediction. In this setting, we use the scores of the
first attention layer as the output of the historical channel. The re-
sults are better than when only the global channel is adopted. This
result shows the effect of the prior experience learned in the first
attention layer; however, it is obviously of limited use because this
traditional attention cannot copewith the development of time and
the evolution of events. We then adopt the global channel with
only the second attention layer in the historical channel. In this
setting, we use the scores of the second attention layer as the out-
put of the historical channel, and the results are significantly bet-
ter than when only the global channel is adopted. In addition, the
results indicate that recent knowledge developments (changes in
the frequency statistics of historical repetitive facts) learned by the
second attention layer contribute more to the prediction. This re-
sult shows that there is both variant and invariant information in

the data. Because the first and second attention layers (correspond-
ing to the second and third rows in Table 3) both perform better
than the global channel, DA-Net successfully captures the invari-
ant historical information, and especially the changing distributed
information of event evolution.

The model in the fourth row of the table uses only the histori-
cal channel for prediction, and its results are slightly worse than
those of DA-Net in terms of the MRR, Hits@1 and Hits@3. How-
ever, in terms of the Hits@10 metric, the performance when only
the historical channel is adopted is worse than the performance
of the second and third rows in Table 3. This result demonstrates
the importance of the global channel in the DA-Net model. When
all the components are adopted, it observes a substantial improve-
ment over any single component. This is because DA-Net includes
and models the global information in the global channel, the in-
variant historical information in the first attention layer and the
variant historical information in the second attention layer. There-
fore, through the ablation test, we can conclude that each model
component contributes to DA-Net, and DA-Net successfully learns
the original attention on repetitive facts as prior experience and
the frequency changes of historical facts as recent knowledge de-
velopments in the novel historical channel.

4.6 Sensitivity Analysis
We investigate the influence of the hyperparameter α on the over-
all capability of the model with the ICEWS18 dataset. The parame-
ter α is a trade-off hyperparameter between the global and histori-
cal channels that indicates howmuch humans refer to historical in-
formation when making decisions. We set α to {0.0, 0.2, 0.4, 0.6,
0.8, 1.0} respectively in the experiment. When α is 0.0, the model
completely ignores the historical information. When α is 1.0, the
model predicts future events based entirely on historical informa-
tion. As shown in Figure 6, we compare the evaluation metrics of
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Figure 6: Parameter sensitivity analy-
sis on ICEWS18 dataset

Figure 7: Study on depth of memory
space with YAGO dataset

Figure 8: Study on knowledge sensi-
tivity of shallow memory on YAGO
dataset

models with various values of the parameterα . Ourmodel achieves
the best results for all the evaluation metrics when α is 0.8. Ac-
cording to the experimental results, our model is sensitive to the
parameter α . Figure 6 shows that when α is greater than 0.8, the
performance of the model decreases significantly, which indicates
that relying only on historical information is not sufficient, and we
need to select the appropriate α to prevent overreliance on histori-
cal information. This conclusion is also consistent with the results
of the ablation test.

4.7 Analysis on the Depth of Memory Space
The vital effect of shallow memory. As shown in Figure 7, for the

test sets of the YAGO dataset, we split the memory space into 11
segments according to depths. For the 189 timestamps (from 0 to
188), the memory space segments {100%-90%, 90%-80%, 80%-70%,
70%-60%, 60%-50%, 50%-40%, 40%-30%, 30%-20%, 20%-10%, 10%-5%,
5%-0%} represent the timestamp ranges {[0, 19), [19, 38), [38, 56),
[56, 75), [75, 94), [94, 113], [113, 132), [132, 150), [150, 169), [169,
179), [179, 188)} from deep to shallow, respectively. As observed
in Figure 7, the most significant contribution to the prediction is
concentrated in the 5% short-term memory, which has almost the
same effect as extracting the historical information across the en-
tire memory space. With increasing memory depth, the prediction
performance decreases. In particular, when the segment range of
the memory space increases from 5% to 20%, the performance de-
crease sharply. The contribution of the memory space at a depth of
greater than 20% remains stable and at a low level. For the 20026
nonrepetitive triples in the test set, we count the number of their
historical repetitive facts in each segment of the memory space.
The final result is represented as a percentage. The blue bars in
Figure 7 show that 93% of the test facts are repeated in shallow
memory (0-5%), which is equivalent to the effect of the complete
memory space. This result proves that for the facts of prediction
timestamps, the repetitive historical information gathers in shal-
low memory space, and decreases with increasing depth. There-
fore, when predicting future events, it is sufficient to concentrate
on shallow memory to extract historical information.

Capturing the knowledge sensitivity of shallow memory. Knowl-
edge sensitivity indicates that the change in frequency-based sta-
tistical information in shallow memory reflects the recent develop-
ments of knowledge, which adjusts the prediction of future events.
Because most repetitive facts are concentrated in shallow memory,
their frequency statistics accumulate from the shallow memory
boundary and remain at a similar level. We use the 187th times-
tamp in the YAGO dataset as the test object and successively add
new historical timestamps to the DA-Net model starting with the
174th timestamp, which is sufficient for demonstrating the effec-
tiveness of DA-Net. We report how performance changes as a re-
sult of the recent new knowledge developments. As shown in Fig-
ure 8, DA-Net is not affected by the addition of new historical infor-
mation until the 178th timestamp. We note that the shallow mem-
ory starts at the 179th timestamp, and the performance of DA-Net
improves with the addition of new historical information. This re-
sult demonstrates that DA-Net is sensitive to recent knowledge de-
velopments when faced with new historical information over time.

5 CONCLUSIONS
In this paper, to address the time-variability problem in temporal
knowledge graph reasoning, we propose DA-Net. Inspired by dual-
process theory in cognitive science, DA-Net assigns distributed at-
tention to historical information at different timestamps through
dual layers of attention, and models the dynamic distribution of
repetitive facts. In the first attention layer (Process I), DA-Net as-
signs traditional attention to repetitive facts based on their history
of distant dependencies. In the second attention layer (Process II),
DA-Net adjusts the original attention based on recent knowledge
developments (changes in the historical frequency statistics). A
large number of experiments demonstrate that DA-Net achieves
a qualitative improvement over baseline methods.
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